This article investigates mechanism-based explanations for a well-known empirical pattern in sociology of education, namely, that Black-White unequal access to school resources -- defined as advanced coursework -- is the highest in racially diverse and majority-White schools. Through an empirically calibrated and validated agent-based model, this study explores the dynamics of two qualitatively informed mechanisms, showing (1) that we have reason to believe that the presence of White students in school can influence the emergence of Black-White advanced enrollment disparities and (2) that such influence can represent another possible explanation for the macro-level pattern of interest. Results contribute to current scholarly accounts of within-school inequalities, shedding light into policy strategies to improve the educational experiences of Black students in racially integrated settings.
Evaluating semantic relatedness of Web resources is still an open challenge. This paper focuses on knowledge-based methods, which represent an alternative to corpus-based approaches, and rely in general on the availability of knowledge graphs. In particular, we have selected 10 methods from the existing literature, that have been organized according to it adjacent resources, triple patterns, and triple weights-based methods. They have been implemented and evaluated by using DBpedia as reference RDF knowledge graph. Since DBpedia is continuously evolving, the experimental results provided by these methods in the literature are not comparable. For this reason, in this work, such methods have been experimented by running them all at once on the same DBpedia release and against 14 well-known golden datasets. On the basis of the correlation values with human judgment obtained according to the experimental results, weighting the RDF triples in combination with evaluating all the directed paths linking the compared resources is the best strategy in order to compute semantic relatedness in DBpedia.
A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.
This paper studies model checking for general parametric regression models having no dimension reduction structures on the predictor vector. Using any U-statistic type test as an initial test, this paper combines the sample-splitting and conditional studentization approaches to construct a COnditionally Studentized Test (COST). Whether the initial test is global or local smoothing-based; the dimension of the predictor vector and the number of parameters are fixed or diverge at a certain rate, the proposed test always has a normal weak limit under the null hypothesis. When the dimension of the predictor vector diverges to infinity at faster rate than the number of parameters, even the sample size, these results are still available under some conditions. This shows the potential of our method to handle higher dimensional problems. Further, the test can detect the local alternatives distinct from the null hypothesis at the fastest possible rate of convergence in hypothesis testing. We also discuss the optimal sample splitting in power performance. The numerical studies offer information on its merits and limitations in finite sample cases including the setting where the dimension of predictor vector equals the sample size. As a generic methodology, it could be applied to other testing problems.
Continual learning refers to the capability of a machine learning model to learn and adapt to new information, without compromising its performance on previously learned tasks. Although several studies have investigated continual learning methods for information retrieval tasks, a well-defined task formulation is still lacking, and it is unclear how typical learning strategies perform in this context. To address this challenge, a systematic task formulation of continual neural information retrieval is presented, along with a multiple-topic dataset that simulates continuous information retrieval. A comprehensive continual neural information retrieval framework consisting of typical retrieval models and continual learning strategies is then proposed. Empirical evaluations illustrate that the proposed framework can successfully prevent catastrophic forgetting in neural information retrieval and enhance performance on previously learned tasks. The results indicate that embedding-based retrieval models experience a decline in their continual learning performance as the topic shift distance and dataset volume of new tasks increase. In contrast, pretraining-based models do not show any such correlation. Adopting suitable learning strategies can mitigate the effects of topic shift and data augmentation.
The research in this article aims to find conditions of an algorithmic nature that are necessary and sufficient to transform any Boolean function in conjunctive normal form into a specific form that guarantees the satisfiability of this function. To find such conditions, we use the concept of a special covering of a set introduced in [13], and investigate the connection between this concept and the notion of satisfiability of Boolean functions. As shown, the problem of existence of a special covering for a set is equivalent to the Boolean satisfiability problem. Thus, an important result is the proof of the existence of necessary and sufficient conditions that make it possible to find out if there is a special covering for the set under the special decomposition. This result allows us to formulate the necessary and sufficient algorithmic conditions for Boolean satisfiability, considering the function in conjunctive normal form as a set of clauses. In parallel, as a result of the aforementioned algorithmic procedure, we obtain the values of the variables that ensure the satisfiability of this function. The terminology used related to graph theory, set theory, Boolean functions and complexity theory is consistent with the terminology in [1], [2], [3], [4]. The newly introduced terms are not found in use by other authors and do not contradict to other terms.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.