In this paper, we investigate a practical structure of reconfigurable intelligent surface (RIS)-based double spatial scattering modulation (DSSM) for millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems. A suboptimal detector is proposed, in which the beam direction is first demodulated according to the received beam strength, and then the remaining information is demodulated by adopting the maximum likelihood algorithm. Based on the proposed suboptimal detector, we derive the conditional pairwise error probability expression. Further, the exact numerical integral and closed-form expressions of unconditional pairwise error probability (UPEP) are derived via two different approaches. To provide more insights, we derive the upper bound and asymptotic expressions of UPEP. In addition, the diversity gain of the RIS-DSSM scheme was also given. Furthermore, the union upper bound of average bit error probability (ABEP) is obtained by combining the UPEP and the number of error bits. Simulation results are provided to validate the derived upper bound and asymptotic expressions of ABEP. We found an interesting phenomenon that the ABEP performance of the proposed system-based phase shift keying is better than that of the quadrature amplitude modulation. Additionally, the performance advantage of ABEP is more significant with the increase in the number of RIS elements.
Taking a discrete approach to functions and dynamical systems, this paper integrates the combinatorial gradients in Forman's discrete Morse theory with persistent homology to forge a unified approach to function simplification. The two crucial ingredients in this effort are the Lefschetz complex, which focuses on the homology at the expense of the geometry of the cells, and the shallow pairs, which are birth-death pairs that can double as vectors in discrete Morse theory. The main new concept is the depth poset on the birth-death pairs, which captures all simplifications achieved through canceling shallow pairs. One of its linear extensions is the ordering by persistence.
Active reconfigurable intelligent surface (ARIS) is a promising way to compensate for multiplicative fading attenuation by amplifying and reflecting event signals to selected users. This paper investigates the performance of ARIS assisted non-orthogonal multiple access (NOMA) networks over cascaded Nakagami-m fading channels. The effects of hardware impairments (HIS) and reflection coefficients on ARIS-NOMA networks with imperfect successive interference cancellation (ipSIC) and perfect successive interference cancellation (pSIC) are considered. More specifically, we develop new precise and asymptotic expressions of outage probability and ergodic data rate with ipSIC/pSIC for ARIS-NOMA-HIS networks. According to the approximated analyses, the diversity orders and multiplexing gains for couple of non-orthogonal users are attained in detail. Additionally, the energy efficiency of ARIS-NOMA-HIS networks is surveyed in delay-limited and delay-tolerant transmission schemes. The simulation findings are presented to demonstrate that: i) The outage behaviors and ergodic data rates of ARIS-NOMA-HIS networks precede that of ARIS aided orthogonal multiple access (OMA) and passive reconfigurable intelligent surface (PRIS) aided OMA; ii) As the reflection coefficient of ARIS increases, ARIS-NOMA-HIS networks have the ability to provide the strengthened outage performance; and iii) ARIS-NOMA-HIS networks are more energy efficient than ARIS/PRIS-OMA networks and conventional cooperative schemes.
In scenarios with limited available or high-quality data, training the function-to-function neural PDE solver in an unsupervised manner is essential. However, the efficiency and accuracy of existing methods are constrained by the properties of numerical algorithms, such as finite difference and pseudo-spectral methods, integrated during the training stage. These methods necessitate careful spatiotemporal discretization to achieve reasonable accuracy, leading to significant computational challenges and inaccurate simulations, particularly in cases with substantial spatiotemporal variations. To address these limitations, we propose the Monte Carlo Neural PDE Solver (MCNP Solver) for training unsupervised neural solvers via the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles. Compared to other unsupervised methods, MCNP Solver naturally inherits the advantages of the Monte Carlo method, which is robust against spatiotemporal variations and can tolerate coarse step size. In simulating the random walk of particles, we employ Heun's method for the convection process and calculate the expectation via the probability density function of neighbouring grid points during the diffusion process. These techniques enhance accuracy and circumvent the computational memory and time issues associated with Monte Carlo sampling, offering an improvement over traditional Monte Carlo methods. Our numerical experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency compared to other unsupervised baselines. The source code will be publicly available at: //github.com/optray/MCNP.
Reconfigurable intelligent surface (RIS) has emerged as a cost-effective solution to improve wireless communication performance through just passive reflection. Recently, the concept of simultaneously transmitting and reflecting RIS (STAR-RIS) has appeared but the study of minimum signal-to-interference-plus-noise ratio (SINR) and the impact of hardware impairments (HWIs) remain open. In addition to previous works on STAR-RIS, we consider a massive multiple-input multiple-output (mMIMO) base station (BS) serving multiple user equipments (UEs) at both sides of the RIS. Specifically, in this work, focusing on the downlink of a single cell, we derive the minimum SINR obtained by the optimal linear precoder (OLP) with HWIs in closed form. The OLP maximises the minimum SINR subject to a given power constraint for any given passive beamforming matrix (PBM). Next, we obtain deterministic equivalents (DEs) for the OLP and the minimum SINR, which are then used to optimise the PBM. Notably, based on the DEs and statistical channel state information (CSI), we optimise simultaneously the amplitude and phase shift by using a projected gradient ascent algorithm (PGAM) for both energy splitting (ES) and mode switching (MS) STAR-RIS operation protocols with reduced feedback, \textcolor{black}{which is quite crucial for STAR-RIS systems that include the double number or variables compared to reflecting only RIS.} Simulations verify the analytical results, shed light on the impact of HWIs, and demonstrate the better performance of STAR-RIS compared to conventional RIS.
In this paper, we propose a progressive learning paradigm for transformer-based variable-rate image compression. Our approach covers a wide range of compression rates with the assistance of the Layer-adaptive Prompt Module (LPM). Inspired by visual prompt tuning, we use LPM to extract prompts for input images and hidden features at the encoder side and decoder side, respectively, which are fed as additional information into the Swin Transformer layer of a pre-trained transformer-based image compression model to affect the allocation of attention region and the bits, which in turn changes the target compression ratio of the model. To ensure the network is more lightweight, we involves the integration of prompt networks with less convolutional layers. Exhaustive experiments show that compared to methods based on multiple models, which are optimized separately for different target rates, the proposed method arrives at the same performance with 80% savings in parameter storage and 90% savings in datasets. Meanwhile, our model outperforms all current variable bitrate image methods in terms of rate-distortion performance and approaches the state-of-the-art fixed bitrate image compression methods trained from scratch.
This paper presents a comprehensive evaluation of three distinct computational algorithms applied to the decision-making process of real estate purchases. Specifically, we analyze the efficacy of Linear Regression from Scikit-learn library, Gaussian Elimination with partial pivoting, and LU Decomposition in predicting the advisability of buying a house in the State of Connecticut based on a set of financial and market-related parameters. The algorithms' performances were compared using a dataset encompassing town-specific details, yearly data, interest rates, and median sale ratios. Our results demonstrate significant differences in predictive accuracy, with Linear Regression and LU Decomposition providing the most reliable recommendations and Gaussian Elimination showing limitations in stability and performance. The study's findings emphasize the importance of algorithm selection in predictive analytic and offer insights into the practical applications of computational methods in real estate investment strategies. By evaluating model efficacy through metrics such as R-squared scores and Mean Squared Error, we provide a nuanced understanding of each method's strengths and weaknesses, contributing valuable knowledge to the fields of real estate analysis and predictive modeling.
The objective of this paper is to describe the study on speech interaction mode for home automation control of equipment by impaired people for an inclusive housing. The study is related to the HIP HOPE project concerning a building of 19 inclusive housing units. 7 participants with different types of disabilities were invited to carry out use cases using voice and touch control. Only the results obtained on the voice interaction mode through the Amazon voice assistant are reported here. The results show, according to the type of handicap, the success rates in the speech recognition of the command emitted on the equipment and highlight the errors related to the formulation, the noisy environment, the intelligible speech, the speech segmentation and the bad synchronization of the audio channel opening.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.