亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Training deep neural networks(DNN) with noisy labels is challenging since DNN can easily memorize inaccurate labels, leading to poor generalization ability. Recently, the meta-learning based label correction strategy is widely adopted to tackle this problem via identifying and correcting potential noisy labels with the help of a small set of clean validation data. Although training with purified labels can effectively improve performance, solving the meta-learning problem inevitably involves a nested loop of bi-level optimization between model weights and hyper-parameters (i.e., label distribution). As compromise, previous methods resort to a coupled learning process with alternating update. In this paper, we empirically find such simultaneous optimization over both model weights and label distribution can not achieve an optimal routine, consequently limiting the representation ability of backbone and accuracy of corrected labels. From this observation, a novel multi-stage label purifier named DMLP is proposed. DMLP decouples the label correction process into label-free representation learning and a simple meta label purifier. In this way, DMLP can focus on extracting discriminative feature and label correction in two distinctive stages. DMLP is a plug-and-play label purifier, the purified labels can be directly reused in naive end-to-end network retraining or other robust learning methods, where state-of-the-art results are obtained on several synthetic and real-world noisy datasets, especially under high noise levels.

相關內容

In the machine learning domain, research on anomaly detection and localization within image data has garnered significant attention, particularly in practical applications such as industrial defect detection. While existing approaches predominantly rely on Convolutional Neural Networks (CNN) as their backbone network, we propose an innovative method based on the Transformer backbone network. Our approach employs a two-stage incremental learning strategy. In the first stage, we train a Masked Autoencoder (MAE) model exclusively on normal images. Subsequently, in the second stage, we implement pixel-level data augmentation techniques to generate corrupted normal images and their corresponding pixel labels. This process enables the model to learn how to repair corrupted regions and classify the state of each pixel. Ultimately, the model produces a pixel reconstruction error matrix and a pixel anomaly probability matrix, which are combined to create an anomaly scoring matrix that effectively identifies abnormal regions. When compared to several state-of-the-art CNN-based techniques, our method demonstrates superior performance on the MVTec AD dataset, achieving an impressive 97.6% AUC.

Hierarchical methods in reinforcement learning have the potential to reduce the amount of decisions that the agent needs to perform when learning new tasks. However, finding reusable useful temporal abstractions that facilitate fast learning remains a challenging problem. Recently, several deep learning approaches were proposed to learn such temporal abstractions in the form of options in an end-to-end manner. In this work, we point out several shortcomings of these methods and discuss their potential negative consequences. Subsequently, we formulate the desiderata for reusable options and use these to frame the problem of learning options as a gradient-based meta-learning problem. This allows us to formulate an objective that explicitly incentivizes options which allow a higher-level decision maker to adjust in few steps to different tasks. Experimentally, we show that our method is able to learn transferable components which accelerate learning and performs better than existing prior methods developed for this setting. Additionally, we perform ablations to quantify the impact of using gradient-based meta-learning as well as other proposed changes.

Large language models (LLMs) are capable to perform complex reasoning by in-context learning (ICL) when provided with a few input-output demonstrations (demos) and more powerful when intermediate reasoning steps ("chain of thoughts (CoT)") of the demos are given. Is it necessary to use multi-demo in ICL? In this paper, we study ICL using fewer demos for each test query on the tasks in~\cite{wei2022chain}. Surprisingly, we do not observe significant degradation when using only one randomly chosen demo. To study this phenomenon, for each test query, we categorize demos into "correct demos" leading to the correct answer, and "wrong demos" resulting in wrong answers. Our analysis reveals an inherent bias in those widely studied datasets: most demos are correct for a majority of test queries, which explains the good performance of using one random demo. Moreover, ICL (with and w/o CoT) using only one correct demo significantly outperforms all-demo ICL adopted by most previous works, indicating the weakness of LLMs in finding correct demo(s) for input queries, which is difficult to evaluate on the biased datasets. Furthermore, we observe a counterintuitive behavior of ICL using multi-demo, i.e., its accuracy degrades(improves) when given more correct(wrong) demos. This implies that ICL can be easily misguided by interference among demos and their spurious correlations. Our analyses highlight several fundamental challenges that need to be addressed in LLMs training, ICL, and benchmark design.

Annotation and labeling of images are some of the biggest challenges in applying deep learning to medical data. Current processes are time and cost-intensive and, therefore, a limiting factor for the wide adoption of the technology. Additionally validating that measured performance improvements are significant is important to select the best model. In this paper, we demonstrate a method for creating segmentations, a necessary part of a data cleaning for ultrasound imaging machine learning pipelines. We propose a four-step method to leverage automatically generated training data and fast human visual checks to improve model accuracy while keeping the time/effort and cost low. We also showcase running experiments multiple times to allow the usage of statistical analysis. Poor quality automated ground truth data and quick visual inspections efficiently train an initial base model, which is refined using a small set of more expensive human-generated ground truth data. The method is demonstrated on a cardiac ultrasound segmentation task, removing background data, including static PHI. Significance is shown by running the experiments multiple times and using the student's t-test on the performance distributions. The initial segmentation accuracy of a simple thresholding algorithm of 92% was improved to 98%. The performance of models trained on complicated algorithms can be matched or beaten by pre-training with the poorer performing algorithms and a small quantity of high-quality data. The introduction of statistic significance analysis for deep learning models helps to validate the performance improvements measured. The method offers a cost-effective and fast approach to achieving high-accuracy models while minimizing the cost and effort of acquiring high-quality training data.

Few-shot learning (FSL) methods typically assume clean support sets with accurately labeled samples when training on novel classes. This assumption can often be unrealistic: support sets, no matter how small, can still include mislabeled samples. Robustness to label noise is therefore essential for FSL methods to be practical, but this problem surprisingly remains largely unexplored. To address mislabeled samples in FSL settings, we make several technical contributions. (1) We offer simple, yet effective, feature aggregation methods, improving the prototypes used by ProtoNet, a popular FSL technique. (2) We describe a novel Transformer model for Noisy Few-Shot Learning (TraNFS). TraNFS leverages a transformer's attention mechanism to weigh mislabeled versus correct samples. (3) Finally, we extensively test these methods on noisy versions of MiniImageNet and TieredImageNet. Our results show that TraNFS is on-par with leading FSL methods on clean support sets, yet outperforms them, by far, in the presence of label noise.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司