亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most successes in autonomous robotic assembly have been restricted to single target or category. We propose to investigate general part assembly, the task of creating novel target assemblies with unseen part shapes. As a fundamental step to a general part assembly system, we tackle the task of determining the precise poses of the parts in the target assembly, which we we term ``rearrangement planning''. We present General Part Assembly Transformer (GPAT), a transformer-based model architecture that accurately predicts part poses by inferring how each part shape corresponds to the target shape. Our experiments on both 3D CAD models and real-world scans demonstrate GPAT's generalization abilities to novel and diverse target and part shapes.

相關內容

Existing hierarchical forecasting techniques scale poorly when the number of time series increases. We propose to learn a coherent forecast for millions of time series with a single bottom-level forecast model by using a sparse loss function that directly optimizes the hierarchical product and/or temporal structure. The benefit of our sparse hierarchical loss function is that it provides practitioners a method of producing bottom-level forecasts that are coherent to any chosen cross-sectional or temporal hierarchy. In addition, removing the need for a post-processing step as required in traditional hierarchical forecasting techniques reduces the computational cost of the prediction phase in the forecasting pipeline. On the public M5 dataset, our sparse hierarchical loss function performs up to 10% (RMSE) better compared to the baseline loss function. We implement our sparse hierarchical loss function within an existing forecasting model at bol, a large European e-commerce platform, resulting in an improved forecasting performance of 2% at the product level. Finally, we found an increase in forecasting performance of about 5-10% when evaluating the forecasting performance across the cross-sectional hierarchies that we defined. These results demonstrate the usefulness of our sparse hierarchical loss applied to a production forecasting system at a major e-commerce platform.

We consider the fair division of indivisible items using the maximin shares measure. Recent work on the topic has focused on extending results beyond the class of additive valuation functions. In this spirit, we study the case where the items form an hereditary set system. We present a simple algorithm that allocates each agent a bundle of items whose value is at least $0.3636$ times the maximin share of the agent. This improves upon the current best known guarantee of $0.2$ due to Ghodsi et al. The analysis of the algorithm is almost tight; we present an instance where the algorithm provides a guarantee of at most $0.3738$. We also show that the algorithm can be implemented in polynomial time given a valuation oracle for each agent.

Variational flows allow practitioners to learn complex continuous distributions, but approximating discrete distributions remains a challenge. Current methodologies typically embed the discrete target in a continuous space - usually via continuous relaxation or dequantization - and then apply a continuous flow. These approaches involve a surrogate target that may not capture the original discrete target, might have biased or unstable gradients, and can create a difficult optimization problem. In this work, we develop a variational flow family for discrete distributions without any continuous embedding. First, we develop a measure-preserving and discrete (MAD) invertible map that leaves the discrete target invariant, and then create a mixed variational flow (MAD Mix) based on that map. Our family provides access to i.i.d. sampling and density evaluation with virtually no tuning effort. We also develop an extension to MAD Mix that handles joint discrete and continuous models. Our experiments suggest that MAD Mix produces more reliable approximations than continuous-embedding flows while being significantly faster to train.

Language models (LMs) have been commonly adopted to boost the performance of automatic speech recognition (ASR) particularly in domain adaptation tasks. Conventional way of LM training treats all the words in corpora equally, resulting in suboptimal improvements in ASR performance. In this work, we introduce a novel correction focused LM training approach which aims to prioritize ASR fallible words. The word-level ASR fallibility score, representing the likelihood of ASR mis-recognition, is defined and shaped as a prior word distribution to guide the LM training. To enable correction focused training with text-only corpora, large language models (LLMs) are employed as fallibility score predictors and text generators through multi-task fine-tuning. Experimental results for domain adaptation tasks demonstrate the effectiveness of our proposed method. Compared with conventional LMs, correction focused training achieves up to relatively 5.5% word error rate (WER) reduction in sufficient text scenarios. In insufficient text scenarios, LM training with LLM-generated text achieves up to relatively 13% WER reduction, while correction focused training further obtains up to relatively 6% WER reduction.

We investigate auction mechanisms to support the emerging format of AI-generated content. We in particular study how to aggregate several LLMs in an incentive compatible manner. In this problem, the preferences of each agent over stochastically generated contents are described/encoded as an LLM. A key motivation is to design an auction format for AI-generated ad creatives to combine inputs from different advertisers. We argue that this problem, while generally falling under the umbrella of mechanism design, has several unique features. We propose a general formalism -- the token auction model -- for studying this problem. A key feature of this model is that it acts on a token-by-token basis and lets LLM agents influence generated contents through single dimensional bids. We first explore a robust auction design approach, in which all we assume is that agent preferences entail partial orders over outcome distributions. We formulate two natural incentive properties, and show that these are equivalent to a monotonicity condition on distribution aggregation. We also show that for such aggregation functions, it is possible to design a second-price auction, despite the absence of bidder valuation functions. We then move to designing concrete aggregation functions by focusing on specific valuation forms based on KL-divergence, a commonly used loss function in LLM. The welfare-maximizing aggregation rules turn out to be the weighted (log-space) convex combination of the target distributions from all participants. We conclude with experimental results in support of the token auction formulation.

A robot providing mealtime assistance must perform specialized maneuvers with various utensils in order to pick up and feed a range of food items. Beyond these dexterous low-level skills, an assistive robot must also plan these strategies in sequence over a long horizon to clear a plate and complete a meal. Previous methods in robot-assisted feeding introduce highly specialized primitives for food handling without a means to compose them together. Meanwhile, existing approaches to long-horizon manipulation lack the flexibility to embed highly specialized primitives into their frameworks. We propose Visual Action Planning OveR Sequences (VAPORS), a framework for long-horizon food acquisition. VAPORS learns a policy for high-level action selection by leveraging learned latent plate dynamics in simulation. To carry out sequential plans in the real world, VAPORS delegates action execution to visually parameterized primitives. We validate our approach on complex real-world acquisition trials involving noodle acquisition and bimanual scooping of jelly beans. Across 38 plates, VAPORS acquires much more efficiently than baselines, generalizes across realistic plate variations such as toppings and sauces, and qualitatively appeals to user feeding preferences in a survey conducted across 49 individuals. Code, datasets, videos, and supplementary materials can be found on our website: //sites.google.com/view/vaporsbot.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司