亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a novel approach to evaluate Counter Narrative (CN) generation using a Large Language Model (LLM) as an evaluator. We show that traditional automatic metrics correlate poorly with human judgements and fail to capture the nuanced relationship between generated CNs and human perception. To alleviate this, we introduce a model ranking pipeline based on pairwise comparisons of generated CNs from different models, organized in a tournament-style format. The proposed evaluation method achieves a high correlation with human preference, with a $\rho$ score of 0.88. As an additional contribution, we leverage LLMs as zero-shot CN generators and provide a comparative analysis of chat, instruct, and base models, exploring their respective strengths and limitations. Through meticulous evaluation, including fine-tuning experiments, we elucidate the differences in performance and responsiveness to domain-specific data. We conclude that chat-aligned models in zero-shot are the best option for carrying out the task, provided they do not refuse to generate an answer due to security concerns.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Networking · MoDELS · 混合專家模型 · Performer ·
2024 年 12 月 13 日

This paper introduces KAMoE, a novel Mixture of Experts (MoE) framework based on Gated Residual Kolmogorov-Arnold Networks (GRKAN). We propose GRKAN as an alternative to the traditional gating function, aiming to enhance efficiency and interpretability in MoE modeling. Through extensive experiments on digital asset markets and real estate valuation, we demonstrate that KAMoE consistently outperforms traditional MoE architectures across various tasks and model types. Our results show that GRKAN exhibits superior performance compared to standard Gating Residual Networks, particularly in LSTM-based models for sequential tasks. We also provide insights into the trade-offs between model complexity and performance gains in MoE and KAMoE architectures.

This paper shows that dimensionality reduction methods such as UMAP and t-SNE, can be approximately recast as MAP inference methods corresponding to a model introduced in ProbDR, that describes the graph Laplacian (an estimate for the precision/inverse covariance) matrix using a Wishart distribution, with a mean given by a non-linear covariance function evaluated on the latents. This interpretation offers deeper theoretical and semantic insights into such algorithms, by showing that variances corresponding to these covariances are low (and misspecified), and forging a connection to Gaussian process latent variable models by showing that well-known kernels can be used to describe covariances implied by graph Laplacians. We also introduce tools with which similar dimensionality reduction methods can be studied, and pose two areas of research arising from these interpretations.

Kolmogorov-Arnold Networks (KANs) have recently emerged as a novel approach to function approximation, demonstrating remarkable potential in various domains. Despite their theoretical promise, the robustness of KANs under adversarial conditions has yet to be thoroughly examined. In this paper we explore the adversarial robustness of KANs, with a particular focus on image classification tasks. We assess the performance of KANs against standard white box and black-box adversarial attacks, comparing their resilience to that of established neural network architectures. Our experimental evaluation encompasses a variety of standard image classification benchmark datasets and investigates both fully connected and convolutional neural network architectures, of three sizes: small, medium, and large. We conclude that small- and medium-sized KANs (either fully connected or convolutional) are not consistently more robust than their standard counterparts, but that large-sized KANs are, by and large, more robust. This comprehensive evaluation of KANs in adversarial scenarios offers the first in-depth analysis of KAN security, laying the groundwork for future research in this emerging field.

This paper introduces the distributed and intelligent integrated sensing and communications (DISAC) concept, a transformative approach for 6G wireless networks that extends the emerging concept of integrated sensing and communications (ISAC). DISAC addresses the limitations of the existing ISAC models and, to overcome them, it introduces two novel foundational functionalities for both sensing and communications: a distributed architecture (enabling large-scale and energy-efficient tracking of connected users and objects, leveraging the fusion of heterogeneous sensors) and a semantic and goal-oriented framework (enabling the transition from classical data fusion to the composition of semantically selected information).

This paper presents a novel method to generate differentially private tabular datasets for hierarchical data, with a specific focus on origin-destination (O/D) trips. The approach builds upon the TopDown algorithm, a constraint-based mechanism designed to incorporate invariant queries into tabular data, developed by the US Census. O/D hierarchical data refers to datasets representing trips between geographical areas organized in a hierarchical structure (e.g., region $\rightarrow$ province $\rightarrow$ city). The developed method is crafted to improve accuracy on queries spanning wider geographical areas that can be obtained by aggregation. Maintaining high accuracy for aggregated geographical queries is a crucial attribute of the differentially private dataset, particularly for practitioners. Furthermore, the approach is designed to minimize false positives detection and to replicate the sparsity of the sensitive data. The key technical contributions of this paper include a novel TopDown algorithm that employs constrained optimization with Chebyshev distance minimization, with theoretical guarantees based on the maximum absolute error. Additionally, we propose a new integer optimization algorithm that significantly reduces the incidence of false positives. The effectiveness of the proposed approach is validated using both real-world and synthetic O/D datasets, demonstrating its ability to generate private data with high utility and a reduced number of false positives. We emphasize that the proposed algorithm is applicable to any tabular data with a hierarchical structure.

In this paper, we present a novel diffusion model-based monaural speech enhancement method. Our approach incorporates the separate estimation of speech spectra's magnitude and phase in two diffusion networks. Throughout the diffusion process, noise clips from real-world noise interferences are added gradually to the clean speech spectra and a noise-aware reverse process is proposed to learn how to generate both clean speech spectra and noise spectra. Furthermore, to fully leverage the intrinsic relationship between magnitude and phase, we introduce a complex-cycle-consistent (CCC) mechanism that uses the estimated magnitude to map the phase, and vice versa. We implement this algorithm within a phase-aware speech enhancement diffusion model (SEDM). We conduct extensive experiments on public datasets to demonstrate the effectiveness of our method, highlighting the significant benefits of exploiting the intrinsic relationship between phase and magnitude information to enhance speech. The comparison to conventional diffusion models demonstrates the superiority of SEDM.

In this paper, we study the behavior of the Upper Confidence Bound-Variance (UCB-V) algorithm for Multi-Armed Bandit (MAB) problems, a variant of the canonical Upper Confidence Bound (UCB) algorithm that incorporates variance estimates into its decision-making process. More precisely, we provide an asymptotic characterization of the arm-pulling rates of UCB-V, extending recent results for the canonical UCB in Kalvit and Zeevi (2021) and Khamaru and Zhang (2024). In an interesting contrast to the canonical UCB, we show that the behavior of UCB-V can exhibit instability, meaning that the arm-pulling rates may not always be asymptotically deterministic. Besides the asymptotic characterization, we also provide non-asymptotic bounds for arm-pulling rates in the high probability regime, offering insights into regret analysis. As an application of this high probability result, we show that UCB-V can achieve a refined regret bound, previously unknown even for more complicate and advanced variance-aware online decision-making algorithms.

In this paper, we propose Lan-grasp, a novel approach towards more appropriate semantic grasping. We use foundation models to provide the robot with a deeper understanding of the objects, the right place to grasp an object, or even the parts to avoid. This allows our robot to grasp and utilize objects in a more meaningful and safe manner. We leverage the combination of a Large Language Model, a Vision Language Model, and a traditional grasp planner to generate grasps demonstrating a deeper semantic understanding of the objects. We first prompt the Large Language Model about which object part is appropriate for grasping. Next, the Vision Language Model identifies the corresponding part in the object image. Finally, we generate grasp proposals in the region proposed by the Vision Language Model. Building on foundation models provides us with a zero-shot grasp method that can handle a wide range of objects without the need for further training or fine-tuning. We evaluated our method in real-world experiments on a custom object data set. We present the results of a survey that asks the participants to choose an object part appropriate for grasping. The results show that the grasps generated by our method are consistently ranked higher by the participants than those generated by a conventional grasping planner and a recent semantic grasping approach. In addition, we propose a Visual Chain-of-Thought feedback loop to assess grasp feasibility in complex scenarios. This mechanism enables dynamic reasoning and generates alternative grasp strategies when needed, ensuring safer and more effective grasping outcomes.

Temporal forward-tracking has been the dominant approach for multi-object segmentation and tracking (MOTS). However, a novel time-symmetric tracking methodology has recently been introduced for the detection, segmentation, and tracking of budding yeast cells in pre-recorded samples. Although this architecture has demonstrated a unique perspective on stable and consistent tracking, as well as missed instance re-interpolation, its evaluation has so far been largely confined to settings related to videomicroscopic environments. In this work, we aim to reveal the broader capabilities, advantages, and potential challenges of this architecture across various specifically designed scenarios, including a pedestrian tracking dataset. We also conduct an ablation study comparing the model against its restricted variants and the widely used Kalman filter. Furthermore, we present an attention analysis of the tracking architecture for both pretrained and non-pretrained models

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司