亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider communication over the Gaussian multiple-access channel in the regime where the number of users grows linearly with the codelength. In this regime, schemes based on sparse superposition coding can achieve a near-optimal tradeoff between spectral efficiency and signal-to-noise ratio. However, these schemes are feasible only for small values of user payload. This paper investigates efficient schemes for larger user payloads, focusing on coded CDMA schemes where each user's information is encoded via a linear code before being modulated with a signature sequence. We propose an efficient approximate message passing (AMP) decoder that can be tailored to the structure of the linear code, and provide an exact asymptotic characterization of its performance. Based on this result, we consider a decoder that integrates AMP and belief propagation and characterize its tradeoff between spectral efficiency and signal-to-noise ratio, for a given target error rate. Simulation results show that the decoder achieves state-of-the-art performance at finite lengths, with a coded CDMA scheme defined using LDPC codes and a spatially coupled matrix of signature sequences.

相關內容

Industrial control systems (ICSs) increasingly rely on digital technologies vulnerable to cyber attacks. Cyber attackers can infiltrate ICSs and execute malicious actions. Individually, each action seems innocuous. But taken together, they cause the system to enter an unsafe state. These attacks have resulted in dramatic consequences such as physical damage, economic loss, and environmental catastrophes. This paper introduces a methodology that restricts actions using protocols. These protocols only allow safe actions to execute. Protocols are written in a domain specific language we have embedded in an interactive theorem prover (ITP). The ITP enables formal, machine-checked proofs to ensure protocols maintain safety properties. We use dynamic attestation to ensure ICSs conform to their protocol even if an adversary compromises a component. Since protocol conformance prevents unsafe actions, the previously mentioned cyber attacks become impossible. We demonstrate the effectiveness of our methodology using an example from the Fischertechnik Industry 4.0 platform. We measure dynamic attestation's impact on latency and throughput. Our approach is a starting point for studying how to combine formal methods and protocol design to thwart attacks intended to cripple ICSs.

We study a censored variant of the data-driven newsvendor problem, where the decision-maker must select an ordering quantity that minimizes expected overage and underage costs based only on offline censored sales data, rather than historical demand realizations. Our goal is to understand how the degree of historical demand censoring affects the performance of any learning algorithm for this problem. To isolate this impact, we adopt a distributionally robust optimization framework, evaluating policies according to their worst-case regret over an ambiguity set of distributions. This set is defined by the largest historical order quantity (the observable boundary of the dataset), and contains all distributions matching the true demand distribution up to this boundary, while allowing them to be arbitrary afterwards. We demonstrate a spectrum of achievability under demand censoring by deriving a natural necessary and sufficient condition under which vanishing regret is an achievable goal. In regimes in which it is not, we exactly characterize the information loss due to censoring: an insurmountable lower bound on the performance of any policy, even when the decision-maker has access to infinitely many demand samples. We then leverage these sharp characterizations to propose a natural robust algorithm that adapts to the historical level of demand censoring. We derive finite-sample guarantees for this algorithm across all possible censoring regimes and show its near-optimality with matching lower bounds (up to polylogarithmic factors). We moreover demonstrate its robust performance via extensive numerical experiments on both synthetic and real-world datasets.

This paper addresses, for the first time, the uplink performance optimization of multi-user pinching-antenna systems, recently developed for next-generation wireless networks. By leveraging the unique capabilities of pinching antennas to dynamically configure wireless channels, we focus on maximizing the minimum achievable data rate between devices to achieve a balanced trade-off between throughput and fairness. An effective approach is proposed that separately optimizes the positions of the pinching antennas and the resource allocation. The antenna positioning problem is reformulated into a convex one, while a closed-form solution is provided for the resource allocation. Simulation results demonstrate the superior performance of the investigated system using the proposed algorithm over corresponding counterparts, emphasizing the significant potential of pinching-antenna systems for robust and efficient uplink communication in next-generation wireless networks.

Graph Neural Networks (GNNs) have been shown as promising solutions for collaborative filtering (CF) with the modeling of user-item interaction graphs. The key idea of existing GNN-based recommender systems is to recursively perform the message passing along the user-item interaction edge for refining the encoded embeddings. Despite their effectiveness, however, most of the current recommendation models rely on sufficient and high-quality training data, such that the learned representations can well capture accurate user preference. User behavior data in many practical recommendation scenarios is often noisy and exhibits skewed distribution, which may result in suboptimal representation performance in GNN-based models. In this paper, we propose SHT, a novel Self-Supervised Hypergraph Transformer framework (SHT) which augments user representations by exploring the global collaborative relationships in an explicit way. Specifically, we first empower the graph neural CF paradigm to maintain global collaborative effects among users and items with a hypergraph transformer network. With the distilled global context, a cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph, so as to enhance the robustness of recommender systems. Extensive experiments demonstrate that SHT can significantly improve the performance over various state-of-the-art baselines. Further ablation studies show the superior representation ability of our SHT recommendation framework in alleviating the data sparsity and noise issues. The source code and evaluation datasets are available at: //github.com/akaxlh/SHT.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

北京阿比特科技有限公司