We study the decomposition of multivariate polynomials as sums of powers of linear forms. We give a randomized algorithm for the following problem: If a homogeneous polynomial $f \in K[x_1 , . . . , x_n]$ (where $K \subseteq \mathbb{C}$) of degree $d$ is given as a blackbox, decide whether it can be written as a linear combination of $d$-th powers of linearly independent complex linear forms. The main novel features of the algorithm are: (1) For $d = 3$, we improve by a factor of $n$ on the running time from an algorithm by Koiran and Skomra. The price to be paid for this improvement though is that the algorithm now has two-sided error. (2) For $d > 3$, we provide the first randomized blackbox algorithm for this problem that runs in time polynomial in $n$ and $d$ (in an algebraic model where only arithmetic operations and equality tests are allowed). Previous algorithms for this problem as well as most of the existing reconstruction algorithms for other classes appeal to a polynomial factorization subroutine. This requires extraction of complex polynomial roots at unit cost and in standard models such as the unit-cost RAM or the Turing machine this approach does not yield polynomial time algorithms. (3) For $d > 3$, when $f$ has rational coefficients, the running time of the blackbox algorithm is polynomial in $n,d$ and the maximal bit size of any coefficient of $f$. This yields the first algorithm for this problem over $\mathbb{C}$ with polynomial running time in the bit model of computation.
We show how to translate a subset of RISC-V machine code compiled from a subset of C to quadratic unconstrained binary optimization (QUBO) models that may be solved by a quantum annealing machine: given a bound $n$, there is input $I$ to a program $P$ such that $P$ runs into a given program state $E$ executing no more than $n$ machine instructions if and only if the QUBO model of $P$ for $n$ evaluates to 0 on $I$. Thus, with more qubits on the machine than variables in the QUBO model, quantum annealing the model reaches 0 (ground) energy in constant time with high probability on some input $I$ that is part of the ground state if and only if $P$ runs into $E$ on $I$ executing no more than $n$ instructions. Translation takes $\mathcal{O}(n^2)$ time effectively turning a quantum annealer into a polynomial-time symbolic execution engine and bounded model checker, eliminating their path and state explosion problems. Here, we take advantage of the fact that any machine instruction may only increase the size of the program state by a constant amount of bits. Translation time comes down from $\mathcal{O}(n^2)$ to $\mathcal{O}(n\cdot|P|)$ if memory consumption of $P$ is bounded by a constant, establishing a linear (quadratic) upper bound on quantum space, in number of qubits on a quantum annealer, in terms of algorithmic time (space) in classical computing. The construction provides a non-relativizing argument for $NP\subseteq BQP$, without violating the optimality of Grover's algorithm, also on gate-model quantum machines, and motivates a temporal and spatial metric of quantum advantage. Our prototypical open-source toolchain translates machine code that runs on real RISC-V hardware to models that can be solved by real quantum annealing hardware, as shown in our experiments.
In this paper, we investigate the homothetic point enclosure problem: given a set $S$ of $n$ triangles with sides parallel to three fixed directions, find a data structure for $S$ that can report all the triangles of $S$ that contain a query point efficiently. The problem is "inverse" of the homothetic range search problem. We present an $O(n\log n)$ space solution that supports the queries in $O(\log n + k)$ time, where $k$ is the output size. The preprocessing time is $O(n\log n)$. The same results also hold for homothetic polygons.
The $k$-Supplier problem is an important location problem that has been actively studied in both general and Euclidean metrics. Many of its variants have also been studied, primarily on general metrics. We study two variants of $k$-Supplier, namely Priority $k$-Supplier and $k$-Supplier with Outliers, in Euclidean metrics. We obtain $(1+\sqrt{3})$-approximation algorithms for both variants, which are the first improvements over the previously-known factor-$3$ approximation (that is known to be best-possible for general metrics). We also study the Matroid Supplier problem on Euclidean metrics, and show that it cannot be approximated to a factor better than $3$ (assuming $P\ne NP$); so the Euclidean metric offers no improvement in this case.
For an abelian group $H$ acting on the set $[\ell]$, an $(H,\ell)$-lift of a graph $G_0$ is a graph obtained by replacing each vertex by $\ell$ copies, and each edge by a matching corresponding to the action of an element of $H$. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group $H \leqslant \text{Sym}(\ell)$, constant degree $d \ge 3$ and $\epsilon > 0$, we construct explicit $d$-regular expander graphs $G$ obtained from an $(H,\ell)$-lift of a (suitable) base $n$-vertex expander $G_0$ with the following parameters: (i) $\lambda(G) \le 2\sqrt{d-1} + \epsilon$, for any lift size $\ell \le 2^{n^{\delta}}$ where $\delta=\delta(d,\epsilon)$, (ii) $\lambda(G) \le \epsilon \cdot d$, for any lift size $\ell \le 2^{n^{\delta_0}}$ for a fixed $\delta_0 > 0$, when $d \ge d_0(\epsilon)$, or (iii) $\lambda(G) \le \widetilde{O}(\sqrt{d})$, for lift size ``exactly'' $\ell = 2^{\Theta(n)}$. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items $(i)$ and $(ii)$ above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for $2$-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing'" depth-first search traversals. Result $(iii)$ is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.
A matrix formalism for the determination of the best estimator in certain simulation-based parameter estimation problems will be presented and discussed. The equations, termed as the Linear Template Fit, combine a linear regression with a least square method and its optimization. The Linear Template Fit employs only predictions that are calculated beforehand and which are provided for a few values of the parameter of interest. Therefore, the Linear Template Fit is particularly suited for parameter estimation with computationally intensive simulations that are otherwise often limited in their usability for statistical inference, or for performance critical applications. Equations for error propagation are discussed, and the analytic form provides comprehensive insights into the parameter estimation problem. Furthermore, the quickly-converging algorithm of the Quadratic Template Fit will be presented, which is suitable for a non-linear dependence on the parameters. As an example application, a determination of the strong coupling constant, $\alpha_s(m_Z)$, from inclusive jet cross section data at the CERN Large Hadron Collider is studied and compared with previously published results.
Graph neural networks (GNNs) have limited expressive power, failing to represent many graph classes correctly. While more expressive graph representation learning (GRL) alternatives can distinguish some of these classes, they are significantly harder to implement, may not scale well, and have not been shown to outperform well-tuned GNNs in real-world tasks. Thus, devising simple, scalable, and expressive GRL architectures that also achieve real-world improvements remains an open challenge. In this work, we show the extent to which graph reconstruction -- reconstructing a graph from its subgraphs -- can mitigate the theoretical and practical problems currently faced by GRL architectures. First, we leverage graph reconstruction to build two new classes of expressive graph representations. Secondly, we show how graph reconstruction boosts the expressive power of any GNN architecture while being a (provably) powerful inductive bias for invariances to vertex removals. Empirically, we show how reconstruction can boost GNN's expressive power -- while maintaining its invariance to permutations of the vertices -- by solving seven graph property tasks not solvable by the original GNN. Further, we demonstrate how it boosts state-of-the-art GNN's performance across nine real-world benchmark datasets.
Node classification is an important problem in graph data management. It is commonly solved by various label propagation methods that work iteratively starting from a few labeled seed nodes. For graphs with arbitrary compatibilities between classes, these methods crucially depend on knowing the compatibility matrix that must be provided by either domain experts or heuristics. Can we instead directly estimate the correct compatibilities from a sparsely labeled graph in a principled and scalable way? We answer this question affirmatively and suggest a method called distant compatibility estimation that works even on extremely sparsely labeled graphs (e.g., 1 in 10,000 nodes is labeled) in a fraction of the time it later takes to label the remaining nodes. Our approach first creates multiple factorized graph representations (with size independent of the graph) and then performs estimation on these smaller graph sketches. We define algebraic amplification as the more general idea of leveraging algebraic properties of an algorithm's update equations to amplify sparse signals. We show that our estimator is by orders of magnitude faster than an alternative approach and that the end-to-end classification accuracy is comparable to using gold standard compatibilities. This makes it a cheap preprocessing step for any existing label propagation method and removes the current dependence on heuristics.
In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting' approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification.
The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.
Like any large software system, a full-fledged DBMS offers an overwhelming amount of configuration knobs. These range from static initialisation parameters like buffer sizes, degree of concurrency, or level of replication to complex runtime decisions like creating a secondary index on a particular column or reorganising the physical layout of the store. To simplify the configuration, industry grade DBMSs are usually shipped with various advisory tools, that provide recommendations for given workloads and machines. However, reality shows that the actual configuration, tuning, and maintenance is usually still done by a human administrator, relying on intuition and experience. Recent work on deep reinforcement learning has shown very promising results in solving problems, that require such a sense of intuition. For instance, it has been applied very successfully in learning how to play complicated games with enormous search spaces. Motivated by these achievements, in this work we explore how deep reinforcement learning can be used to administer a DBMS. First, we will describe how deep reinforcement learning can be used to automatically tune an arbitrary software system like a DBMS by defining a problem environment. Second, we showcase our concept of NoDBA at the concrete example of index selection and evaluate how well it recommends indexes for given workloads.