亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Privacy concerns have attracted increasing attention in data-driven products and services. Existing legislation forbids arbitrary processing of personal data collected from individuals. Generating synthetic versions of such data with a formal privacy guarantee such as differential privacy (DP) is considered to be a solution to address privacy concerns. In this direction, we show a simple, practical, and effective recipe in the text domain: simply fine-tuning a generative language model with DP allows us to generate useful synthetic text while mitigating privacy concerns. Through extensive empirical analyses, we demonstrate that our method produces synthetic data that is competitive in terms of utility with its non-private counterpart and meanwhile provides strong protection against potential privacy leakages.

相關內容

Informed consent has become increasingly salient for data privacy and its regulation. Entities from governments to for-profit companies have addressed concerns about data privacy with policies that enumerate the conditions for personal data storage and transfer. However, increased enumeration of and transparency in data privacy policies has not improved end-users' comprehension of how their data might be used: not only are privacy policies written in legal language that users may struggle to understand, but elements of these policies may compose in such a way that the consequences of the policy are not immediately apparent. We present a framework that uses Answer Set Programming (ASP) -- a type of logic programming -- to formalize privacy policies. Privacy policies thus become constraints on a narrative planning space, allowing end-users to forward-simulate possible consequences of the policy in terms of actors having roles and taking actions in a domain. We demonstrate through the example of the Health Insurance Portability and Accountability Act (HIPAA) how to use the system in various ways, including asking questions about possibilities and identifying which clauses of the law are broken by a given sequence of events.

In the field of privacy protection, publishing complete data (especially high-dimensional data sets) is one of the most challenging problems. The common encryption technology can not deal with the attacker to take differential attack to obtain sensitive information, while the existing differential privacy protection algorithm model takes a long time for high-dimensional calculation and needs to add noise to reduce data accuracy, which is not suitable for high-dimensional large data sets. In view of this situation, this paper designs a complete data synthesis scheme to protect data privacy around the concept of "plausible denial". Firstly, the paper provides the theoretical support for the difference between "plausible data" and "plausible data". In the process of scheme designing, this paper decomposes the scheme design into construction data synthesis module and privacy test module, then designs algorithm models for them respectively and realizes the function of privacy protection. When evaluating the feasibility of the scheme, the paper selects the Results of the 2013 community census in the United States as the high-dimensional data set, uses the simulation program that is based on Python to test and analyzes the efficiency and reliability of the data synthesis scheme. This portion focuses on the evaluation of the privacy protection effectiveness of the scheme.

Cloud-edge collaborative inference approach splits deep neural networks (DNNs) into two parts that run collaboratively on resource-constrained edge devices and cloud servers, aiming at minimizing inference latency and protecting data privacy. However, even if the raw input data from edge devices is not directly exposed to the cloud, state-of-the-art attacks targeting collaborative inference are still able to reconstruct the raw private data from the intermediate outputs of the exposed local models, introducing serious privacy risks. In this paper, a secure privacy inference framework for cloud-edge collaboration is proposed, termed CIS, which supports adaptively partitioning the network according to the dynamically changing network bandwidth and fully releases the computational power of edge devices. To mitigate the influence introduced by private perturbation, CIS provides a way to achieve differential privacy protection by adding refined noise to the intermediate layer feature maps offloaded to the cloud. Meanwhile, with a given total privacy budget, the budget is reasonably allocated by the size of the feature graph rank generated by different convolution filters, which makes the inference in the cloud robust to the perturbed data, thus effectively trade-off the conflicting problem between privacy and availability. Finally, we construct a real cloud-edge collaborative inference computing scenario to verify the effectiveness of inference latency and model partitioning on resource-constrained edge devices. Furthermore, the state-of-the-art cloud-edge collaborative reconstruction attack is used to evaluate the practical availability of the end-to-end privacy protection mechanism provided by CIS.

Knowledge Distillation (KD) is a commonly used technique for improving the generalization of compact Pre-trained Language Models (PLMs) on downstream tasks. However, such methods impose the additional burden of training a separate teacher model for every new dataset. Alternatively, one may directly work on the improvement of the optimization procedure of the compact model toward better generalization. Recent works observe that the flatness of the local minimum correlates well with better generalization. In this work, we adapt Stochastic Weight Averaging (SWA), a method encouraging convergence to a flatter minimum, to fine-tuning PLMs. We conduct extensive experiments on various NLP tasks (text classification, question answering, and generation) and different model architectures and demonstrate that our adaptation improves the generalization without extra computation cost. Moreover, we observe that this simple optimization technique is able to outperform the state-of-the-art KD methods for compact models.

Recent pre-trained language models have shown promising capabilities in generating fluent and realistic natural language text. However, generating multi-sentence text with global content planning has been a long-existing research question. Current approaches for controlled text generation can hardly address this issue, as they usually condition on single known control attributes. In this study, we propose a low-cost yet effective framework which explicitly models the global content plan of the generated text. Specifically, it optimizes the joint distribution of the natural language sequence and the global content plan in a plug-and-play manner. We conduct extensive experiments on the well-established Recipe1M+ benchmark. Both automatic and human evaluations verify that our model achieves the state-of-the-art performance on the task of recipe generation

Recent studies on semi-supervised semantic segmentation (SSS) have seen fast progress. Despite their promising performance, current state-of-the-art methods tend to increasingly complex designs at the cost of introducing more network components and additional training procedures. Differently, in this work, we follow a standard teacher-student framework and propose AugSeg, a simple and clean approach that focuses mainly on data perturbations to boost the SSS performance. We argue that various data augmentations should be adjusted to better adapt to the semi-supervised scenarios instead of directly applying these techniques from supervised learning. Specifically, we adopt a simplified intensity-based augmentation that selects a random number of data transformations with uniformly sampling distortion strengths from a continuous space. Based on the estimated confidence of the model on different unlabeled samples, we also randomly inject labelled information to augment the unlabeled samples in an adaptive manner. Without bells and whistles, our simple AugSeg can readily achieve new state-of-the-art performance on SSS benchmarks under different partition protocols.

Mix-up training approaches have proven to be effective in improving the generalization ability of Deep Neural Networks. Over the years, the research community expands mix-up methods into two directions, with extensive efforts to improve saliency-guided procedures but minimal focus on the arbitrary path, leaving the randomization domain unexplored. In this paper, inspired by the superior qualities of each direction over one another, we introduce a novel method that lies at the junction of the two routes. By combining the best elements of randomness and saliency utilization, our method balances speed, simplicity, and accuracy. We name our method R-Mix following the concept of "Random Mix-up". We demonstrate its effectiveness in generalization, weakly supervised object localization, calibration, and robustness to adversarial attacks. Finally, in order to address the question of whether there exists a better decision protocol, we train a Reinforcement Learning agent that decides the mix-up policies based on the classifier's performance, reducing dependency on human-designed objectives and hyperparameter tuning. Extensive experiments further show that the agent is capable of performing at the cutting-edge level, laying the foundation for a fully automatic mix-up. Our code is released at [//github.com/minhlong94/Random-Mixup].

We present new methods for assessing the privacy guarantees of an algorithm with regard to R\'enyi Differential Privacy. To the best of our knowledge, this work is the first to address this problem in a black-box scenario, where only algorithmic outputs are available. To quantify privacy leakage, we devise a new estimator for the R\'enyi divergence of a pair of output distributions. This estimator is transformed into a statistical lower bound that is proven to hold for large samples with high probability. Our method is applicable for a broad class of algorithms, including many well-known examples from the privacy literature. We demonstrate the effectiveness of our approach by experiments encompassing algorithms and privacy enhancing methods that have not been considered in related works.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司