The tendency of a jet to stay attached to a flat or convex surface is called the Coand\u{a} effect and has many potential technical applications. The aim of this thesis is to assess how well Computational Fluid Dynamics can capture it. A Reynolds-Averaged Navier-Stokes approach with a 2-dimensional domain was first used to simulate an offset jet on a flat plane. Whether it was for $k-\omega$ SST or $k-\epsilon$ turbulence model, a good prediction of the flow was found. Since it is known that streamline curvature can have an important impact on the numerical results, a jet blown tangentially to a cylinder was then considered. Using the same approach as for the flat plane, with $k-\omega$ SST turbulence model, some of the flow features such as the separation location or velocity profiles near the jet exit were accurately predicted. However, the jet development was overall poorly captured. A Curvature Correction was then introduced in the turbulence model and if it did slightly improve the jet development, the negative impact on other quantities makes its benefits questionable. Due to the known presence of longitudinal and spanwise vortices in the flow, a Reynolds-Averaged Navier-Stokes approach with a 3-dimensional domain was attempted but was only able to reproduce the 2-dimensional results. Although if the longitudinal vortices are artificially generated at the inlet, their development is supported by the simulation. Finally, since the shortcomings of the numerical results obtained might be due to limitations of the Reynolds-Averaged Navier-Stokes approach, a Large Eddy Simulation was attempted. Unfortunately, due to time and computational restrictions a fully developed flow could not be obtained, the methodology and preliminary results are however presented.
In this work, we focus on the high-dimensional trace regression model with a low-rank coefficient matrix. We establish a nearly optimal in-sample prediction risk bound for the rank-constrained least-squares estimator under no assumptions on the design matrix. Lying at the heart of the proof is a covering number bound for the family of projection operators corresponding to the subspaces spanned by the design. By leveraging this complexity result, we perform a power analysis for a permutation test on the existence of a low-rank signal under the high-dimensional trace regression model. Finally, we use alternating minimization to approximately solve the rank-constrained least-squares problem to evaluate its empirical in-sample prediction risk and power of the resulting permutation test in our numerical study.
The availability of multi-modality datasets provides a unique opportunity to characterize the same object of interest using multiple viewpoints more comprehensively. In this work, we investigate the use of canonical correlation analysis (CCA) and penalized variants of CCA (pCCA) for the fusion of two modalities. We study a simple graphical model for the generation of two-modality data. We analytically show that, with known model parameters, posterior mean estimators that jointly use both modalities outperform arbitrary linear mixing of single modality posterior estimators in latent variable prediction. Penalized extensions of CCA (pCCA) that incorporate domain knowledge can discover correlations with high-dimensional, low-sample data, whereas traditional CCA is inapplicable. To facilitate the generation of multi-dimensional embeddings with pCCA, we propose two matrix deflation schemes that enforce desirable properties exhibited by CCA. We propose a two-stage prediction pipeline using pCCA embeddings generated with deflation for latent variable prediction by combining all the above. On simulated data, our proposed model drastically reduces the mean-squared error in latent variable prediction. When applied to publicly available histopathology data and RNA-sequencing data from The Cancer Genome Atlas (TCGA) breast cancer patients, our model can outperform principal components analysis (PCA) embeddings of the same dimension in survival prediction.
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limit the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran {over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models} on multiple dataset settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking tools, evaluation protocols, and experimental settings of our work to promote reproducible research in this field.
Unsupervised image-to-image translation methods aim to map images from one domain into plausible examples from another domain while preserving structures shared across two domains. In the many-to-many setting, an additional guidance example from the target domain is used to determine domain-specific attributes of the generated image. In the absence of attribute annotations, methods have to infer which factors are specific to each domain from data during training. Many state-of-art methods hard-code the desired shared-vs-specific split into their architecture, severely restricting the scope of the problem. In this paper, we propose a new method that does not rely on such inductive architectural biases, and infers which attributes are domain-specific from data by constraining information flow through the network using translation honesty losses and a penalty on the capacity of domain-specific embedding. We show that the proposed method achieves consistently high manipulation accuracy across two synthetic and one natural dataset spanning a wide variety of domain-specific and shared attributes.
Convolutional dictionary learning (CDL), the problem of estimating shift-invariant templates from data, is typically conducted in the absence of a prior/structure on the templates. In data-scarce or low signal-to-noise ratio (SNR) regimes, learned templates overfit the data and lack smoothness, which can affect the predictive performance of downstream tasks. To address this limitation, we propose GPCDL, a convolutional dictionary learning framework that enforces priors on templates using Gaussian Processes (GPs). With the focus on smoothness, we show theoretically that imposing a GP prior is equivalent to Wiener filtering the learned templates, thereby suppressing high-frequency components and promoting smoothness. We show that the algorithm is a simple extension of the classical iteratively reweighted least squares algorithm, independent of the choice of GP kernels. This property allows one to experiment flexibly with different smoothness assumptions. Through simulation, we show that GPCDL learns smooth dictionaries with better accuracy than the unregularized alternative across a range of SNRs. Through an application to neural spiking data, we show that GPCDL learns a more accurate and visually-interpretable smooth dictionary, leading to superior predictive performance compared to non-regularized CDL, as well as parametric alternatives.
This work develops a multiphase thermomechanical model of porous silica aerogel and implements an uncertainty analysis framework consisting of the Sobol methods for global sensitivity analyses and Bayesian inference using a set of experimental data of silica aerogel. A notable feature of this work is implementing a new noise model within the Bayesian inversion to account for data uncertainty and modeling error. The hyper-parameters in the likelihood balance data misfit and prior contribution to the parameter posteriors and prevent their biased estimation. The results indicate that the uncertainty in solid conductivity and elasticity are the most influential parameters affecting the model output variance. Also, the Bayesian inference shows that despite the microstructural randomness in the thermal measurements, the model captures the data with 2% error. However, the model is inadequate in simulating the stress-strain measurements resulting in significant uncertainty in the computational prediction of a building insulation component.
Lane detection, the process of identifying lane markings as approximated curves, is widely used for lane departure warning and adaptive cruise control in autonomous vehicles. The popular pipeline that solves it in two steps -- feature extraction plus post-processing, while useful, is too inefficient and flawed in learning the global context and lanes' long and thin structures. To tackle these issues, we propose an end-to-end method that directly outputs parameters of a lane shape model, using a network built with a transformer to learn richer structures and context. The lane shape model is formulated based on road structures and camera pose, providing physical interpretation for parameters of network output. The transformer models non-local interactions with a self-attention mechanism to capture slender structures and global context. The proposed method is validated on the TuSimple benchmark and shows state-of-the-art accuracy with the most lightweight model size and fastest speed. Additionally, our method shows excellent adaptability to a challenging self-collected lane detection dataset, showing its powerful deployment potential in real applications. Codes are available at //github.com/liuruijin17/LSTR.
In two-phase image segmentation, convex relaxation has allowed global minimisers to be computed for a variety of data fitting terms. Many efficient approaches exist to compute a solution quickly. However, we consider whether the nature of the data fitting in this formulation allows for reasonable assumptions to be made about the solution that can improve the computational performance further. In particular, we employ a well known dual formulation of this problem and solve the corresponding equations in a restricted domain. We present experimental results that explore the dependence of the solution on this restriction and quantify imrovements in the computational performance. This approach can be extended to analogous methods simply and could provide an efficient alternative for problems of this type.
In this work, we compare three different modeling approaches for the scores of soccer matches with regard to their predictive performances based on all matches from the four previous FIFA World Cups 2002 - 2014: Poisson regression models, random forests and ranking methods. While the former two are based on the teams' covariate information, the latter method estimates adequate ability parameters that reflect the current strength of the teams best. Within this comparison the best-performing prediction methods on the training data turn out to be the ranking methods and the random forests. However, we show that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate we can improve the predictive power substantially. Finally, this combination of methods is chosen as the final model and based on its estimates, the FIFA World Cup 2018 is simulated repeatedly and winning probabilities are obtained for all teams. The model slightly favors Spain before the defending champion Germany. Additionally, we provide survival probabilities for all teams and at all tournament stages as well as the most probable tournament outcome.
Sentiment analysis, also called opinion mining, is the field of study that analyzes people's opinions,sentiments, attitudes and emotions. Songs are important to sentiment analysis since the songs and mood are mutually dependent on each other. Based on the selected song it becomes easy to find the mood of the listener, in future it can be used for recommendation. The song lyric is a rich source of datasets containing words that are helpful in analysis and classification of sentiments generated from it. Now a days we observe a lot of inter-sentential and intra-sentential code-mixing in songs which has a varying impact on audience. To study this impact we created a Telugu songs dataset which contained both Telugu-English code-mixed and pure Telugu songs. In this paper, we classify the songs based on its arousal as exciting or non-exciting. We develop a language identification tool and introduce code-mixing features obtained from it as additional features. Our system with these additional features attains 4-5% accuracy greater than traditional approaches on our dataset.