Approximate Thompson sampling with Langevin Monte Carlo broadens its reach from Gaussian posterior sampling to encompass more general smooth posteriors. However, it still encounters scalability issues in high-dimensional problems when demanding high accuracy. To address this, we propose an approximate Thompson sampling strategy, utilizing underdamped Langevin Monte Carlo, where the latter is the go-to workhorse for simulations of high-dimensional posteriors. Based on the standard smoothness and log-concavity conditions, we study the accelerated posterior concentration and sampling using a specific potential function. This design improves the sample complexity for realizing logarithmic regrets from $\mathcal{\tilde O}(d)$ to $\mathcal{\tilde O}(\sqrt{d})$. The scalability and robustness of our algorithm are also empirically validated through synthetic experiments in high-dimensional bandit problems.
The integration of Spiking Neural Networks (SNNs) and Graph Neural Networks (GNNs) is gradually attracting attention due to the low power consumption and high efficiency in processing the non-Euclidean data represented by graphs. However, as a common problem, dynamic graph representation learning faces challenges such as high complexity and large memory overheads. Current work often uses SNNs instead of Recurrent Neural Networks (RNNs) by using binary features instead of continuous ones for efficient training, which would overlooks graph structure information and leads to the loss of details during propagation. Additionally, optimizing dynamic spiking models typically requires propagation of information across time steps, which increases memory requirements. To address these challenges, we present a framework named \underline{Dy}namic \underline{S}p\underline{i}king \underline{G}raph \underline{N}eural Networks (\method{}). To mitigate the information loss problem, \method{} propagates early-layer information directly to the last layer for information compensation. To accommodate the memory requirements, we apply the implicit differentiation on the equilibrium state, which does not rely on the exact reverse of the forward computation. While traditional implicit differentiation methods are usually used for static situations, \method{} extends it to the dynamic graph setting. Extensive experiments on three large-scale real-world dynamic graph datasets validate the effectiveness of \method{} on dynamic node classification tasks with lower computational costs.
Variational Physics-Informed Neural Networks often suffer from poor convergence when using stochastic gradient-descent-based optimizers. By introducing a Least Squares solver for the weights of the last layer of the neural network, we improve the convergence of the loss during training in most practical scenarios. This work analyzes the computational cost of the resulting hybrid Least-Squares/Gradient-Descent optimizer and explains how to implement it efficiently. In particular, we show that a traditional implementation based on backward-mode automatic differentiation leads to a prohibitively expensive algorithm. To remedy this, we propose using either forward-mode automatic differentiation or an ultraweak-type scheme that avoids the differentiation of trial functions in the discrete weak formulation. The proposed alternatives are up to 100 times faster than the traditional one, recovering a computational cost-per-iteration similar to that of a conventional gradient-descent-based optimizer alone. To support our analysis, we derive computational estimates and conduct numerical experiments in one- and two-dimensional problems.
The integration of Spiking Neural Networks (SNNs) and Graph Neural Networks (GNNs) is gradually attracting attention due to the low power consumption and high efficiency in processing the non-Euclidean data represented by graphs. However, as a common problem, dynamic graph representation learning faces challenges such as high complexity and large memory overheads. Current work often uses SNNs instead of Recurrent Neural Networks (RNNs) by using binary features instead of continuous ones for efficient training, which would overlooks graph structure information and leads to the loss of details during propagation. Additionally, optimizing dynamic spiking models typically requires propagation of information across time steps, which increases memory requirements. To address these challenges, we present a framework named \underline{Dy}namic \underline{S}p\underline{i}king \underline{G}raph \underline{N}eural Networks (\method{}). To mitigate the information loss problem, \method{} propagates early-layer information directly to the last layer for information compensation. To accommodate the memory requirements, we apply the implicit differentiation on the equilibrium state, which does not rely on the exact reverse of the forward computation. While traditional implicit differentiation methods are usually used for static situations, \method{} extends it to the dynamic graph setting. Extensive experiments on three large-scale real-world dynamic graph datasets validate the effectiveness of \method{} on dynamic node classification tasks with lower computational costs.
The Retrieval-Augmented Language Model (RALM) has shown remarkable performance on knowledge-intensive tasks by incorporating external knowledge during inference, which mitigates the factual hallucinations inherited in large language models (LLMs). Despite these advancements, challenges persist in the implementation of RALMs, particularly concerning their reliability and traceability. To be specific, the irrelevant document retrieval may result in unhelpful response generation or even deteriorate the performance of LLMs, while the lack of proper citations in generated outputs complicates efforts to verify the trustworthiness of the models. To this end, we propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs, whose core idea is to leverage reasoning trajectories generated by the LLM itself. The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process. We have evaluated our framework across four public datasets (two short-form QA datasets, one long-form QA dataset, and one fact verification dataset) to demonstrate the superiority of our method, which can outperform existing state-of-art models and can achieve comparable performance with GPT-4, while only using 2,000 training samples.
Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.
While Large Language Models (LLM) have created a massive technological impact in the past decade, allowing for human-enabled applications, they can produce output that contains stereotypes and biases, especially when using low-resource languages. This can be of great ethical concern when dealing with sensitive topics such as religion. As a means toward making LLMS more fair, we explore bias from a religious perspective in Bengali, focusing specifically on two main religious dialects: Hindu and Muslim-majority dialects. Here, we perform different experiments and audit showing the comparative analysis of different sentences using three commonly used LLMs: ChatGPT, Gemini, and Microsoft Copilot, pertaining to the Hindu and Muslim dialects of specific words and showcasing which ones catch the social biases and which do not. Furthermore, we analyze our findings and relate them to potential reasons and evaluation perspectives, considering their global impact with over 300 million speakers worldwide. With this work, we hope to establish the rigor for creating more fairness in LLMs, as these are widely used as creative writing agents.
Explainable Artificial Intelligence (XAI) aims to improve the transparency of autonomous decision-making through explanations. Recent literature has emphasised users' need for holistic "multi-shot" explanations and the ability to personalise their engagement with XAI systems. We refer to this user-centred interaction as an XAI Experience. Despite advances in creating XAI experiences, evaluating them in a user-centred manner has remained challenging. To address this, we introduce the XAI Experience Quality (XEQ) Scale (pronounced "Seek" Scale), for evaluating the user-centred quality of XAI experiences. Furthermore, XEQ quantifies the quality of experiences across four evaluation dimensions: learning, utility, fulfilment and engagement. These contributions extend the state-of-the-art of XAI evaluation, moving beyond the one-dimensional metrics frequently developed to assess single-shot explanations. In this paper, we present the XEQ scale development and validation process, including content validation with XAI experts as well as discriminant and construct validation through a large-scale pilot study. Out pilot study results offer strong evidence that establishes the XEQ Scale as a comprehensive framework for evaluating user-centred XAI experiences.
To overcome these obstacles and improve computational accuracy and efficiency, this paper presents the Randomized Radial Basis Function Neural Network (RRNN), an innovative approach explicitly crafted for solving multiscale elliptic equations. The RRNN method commences by decomposing the computational domain into non-overlapping subdomains. Within each subdomain, the solution to the localized subproblem is approximated by a randomized radial basis function neural network with a Gaussian kernel. This network is distinguished by the random assignment of width and center coefficients for its activation functions, thereby rendering the training process focused solely on determining the weight coefficients of the output layer. For each subproblem, similar to the Petrov-Galerkin finite element method, a linear system will be formulated on the foundation of a weak formulation. Subsequently, a selection of collocation points is stochastically sampled at the boundaries of the subdomain, ensuring satisfying $C^0$ and $C^1$ continuity and boundary conditions to couple these localized solutions. The network is ultimately trained using the least squares method to ascertain the output layer weights. To validate the RRNN method's effectiveness, an extensive array of numerical experiments has been executed and the results demonstrate that the proposed method can improve the accuracy and efficiency well.
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities. However, their performance may be suboptimal for long-tail or domain-specific tasks due to limited exposure to domain-specific knowledge and vocabulary. Additionally, the lack of transparency of most state-of-the-art (SOTA) LLMs, which can only be accessed via APIs, impedes further fine-tuning with custom data. Moreover, data privacy is a significant concern. To address these challenges, we propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge at runtime without altering the LLMs' parameters. Our PKG is based on open-source "white-box" small language models, allowing offline storage of any knowledge that LLMs require. We demonstrate that our PKG framework can enhance the performance of "black-box" LLMs on a range of long-tail and domain-specific downstream tasks requiring factual, tabular, medical, and multimodal knowledge.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.