We present a method for systematically evaluating the correctness and robustness of instruction-tuned large language models (LLMs) for code generation via a new benchmark, Turbulence. Turbulence consists of a large set of natural language $\textit{question templates}$, each of which is a programming problem, parameterised so that it can be asked in many different forms. Each question template has an associated $\textit{test oracle}$ that judges whether a code solution returned by an LLM is correct. Thus, from a single question template, it is possible to ask an LLM a $\textit{neighbourhood}$ of very similar programming questions, and assess the correctness of the result returned for each question. This allows gaps in an LLM's code generation abilities to be identified, including $\textit{anomalies}$ where the LLM correctly solves $\textit{almost all}$ questions in a neighbourhood but fails for particular parameter instantiations. We present experiments against five LLMs from OpenAI, Cohere and Meta, each at two temperature configurations. Our findings show that, across the board, Turbulence is able to reveal gaps in LLM reasoning ability. This goes beyond merely highlighting that LLMs sometimes produce wrong code (which is no surprise): by systematically identifying cases where LLMs are able to solve some problems in a neighbourhood but do not manage to generalise to solve the whole neighbourhood, our method is effective at highlighting $\textit{robustness}$ issues. We present data and examples that shed light on the kinds of mistakes that LLMs make when they return incorrect code results.
While (large) language models have significantly improved over the last years, they still struggle to sensibly process long sequences found, e.g., in books, due to the quadratic scaling of the underlying attention mechanism. To address this, we propose NextLevelBERT, a Masked Language Model operating not on tokens, but on higher-level semantic representations in the form of text embeddings. We pretrain NextLevelBERT to predict the vector representation of entire masked text chunks and evaluate the effectiveness of the resulting document vectors on three task types: 1) Semantic Textual Similarity via zero-shot document embeddings, 2) Long document classification, 3) Multiple-choice question answering. We find that next level Masked Language Modeling is an effective technique to tackle long-document use cases and can outperform much larger embedding models as long as the required level of detail is not too high. We make model and code available.
With the fast development of large language models (LLMs), LLM-driven Web Agents (Web Agents for short) have obtained tons of attention due to their superior capability where LLMs serve as the core part of making decisions like the human brain equipped with multiple web tools to actively interact with external deployed websites. As uncountable Web Agents have been released and such LLM systems are experiencing rapid development and drawing closer to widespread deployment in our daily lives, an essential and pressing question arises: "Are these Web Agents secure?". In this paper, we introduce a novel threat, WIPI, that indirectly controls Web Agent to execute malicious instructions embedded in publicly accessible webpages. To launch a successful WIPI works in a black-box environment. This methodology focuses on the form and content of indirect instructions within external webpages, enhancing the efficiency and stealthiness of the attack. To evaluate the effectiveness of the proposed methodology, we conducted extensive experiments using 7 plugin-based ChatGPT Web Agents, 8 Web GPTs, and 3 different open-source Web Agents. The results reveal that our methodology achieves an average attack success rate (ASR) exceeding 90% even in pure black-box scenarios. Moreover, through an ablation study examining various user prefix instructions, we demonstrated that the WIPI exhibits strong robustness, maintaining high performance across diverse prefix instructions.
The growing integration of large language models (LLMs) into social operations amplifies their impact on decisions in crucial areas such as economics, law, education, and healthcare, raising public concerns about these models' discrimination-related safety and reliability. However, prior discrimination measuring frameworks solely assess the average discriminatory behavior of LLMs, often proving inadequate due to the overlook of an additional discrimination-leading factor, i.e., the LLMs' prediction variation across diverse contexts. In this work, we present the Prejudice-Caprice Framework (PCF) that comprehensively measures discrimination in LLMs by considering both their consistently biased preference and preference variation across diverse contexts. Specifically, we mathematically dissect the aggregated contextualized discrimination risk of LLMs into prejudice risk, originating from LLMs' persistent prejudice, and caprice risk, stemming from their generation inconsistency. In addition, we utilize a data-mining approach to gather preference-detecting probes from sentence skeletons, devoid of attribute indications, to approximate LLMs' applied contexts. While initially intended for assessing discrimination in LLMs, our proposed PCF facilitates the comprehensive and flexible measurement of any inductive biases, including knowledge alongside prejudice, across various modality models. We apply our discrimination-measuring framework to 12 common LLMs, yielding intriguing findings: i) modern LLMs demonstrate significant pro-male stereotypes, ii) LLMs' exhibited discrimination correlates with several social and economic factors, iii) prejudice risk dominates the overall discrimination risk and follows a normal distribution, and iv) caprice risk contributes minimally to the overall risk but follows a fat-tailed distribution, suggesting that it is wild risk requiring enhanced surveillance.
The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at //github.com/zyxxmu/DSnoT.
Large language models (LLM) have recently attracted surging interest due to their outstanding capabilities across various domains. However, enabling efficient LLM inference is challenging due to its autoregressive decoding that generates tokens only one at a time. Although research works apply pruning or quantization to speed up LLM inference, they typically require fine-tuning the LLM, incurring significant time and economic costs. Meanwhile, speculative decoding has been proposed to use small speculative models (SSMs) to accelerate the inference of LLM. However, the low acceptance rate of SSM and the high verification cost of LLM prohibit further performance improvement of inference. In this paper, we propose Minions, an LLM inference system that accelerates LLM inference with a collective and adaptive speculative generation. Specifically, Minions proposes a majority-voted mechanism to leverage multiple SSMs to jointly speculate the outputs of LLM, which improves the inference performance without introducing prohibitive computation costs for LLM. To better trade off the number of tokens speculated from SSM and the verification cost of LLM, Minions proposes an adaptive mechanism to dynamically determine the optimal speculation length of SSM, which can achieve better inference performance across different models, datasets, and hyper-parameters. In addition, Minions decouples the SSM decoding and LLM verification efficiently and adopts a pipelined execution mechanism to further improve the inference performance of LLM. By comparing with the state-of-the-art LLM inference systems, we demonstrate that Minions can achieve higher inference throughput and lower inference time.
With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.