亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many current works directly adopt multi-rate depth-wise dilated convolutions to capture multi-scale contextual information simultaneously from one input feature map, thus improving the feature extraction efficiency for real-time semantic segmentation. However, this design may lead to difficult access to multi-scale contextual information because of the unreasonable structure and hyperparameters. To lower the difficulty of drawing multi-scale contextual information, we propose a highly efficient multi-scale feature extraction method, which decomposes the original single-step method into two steps, Region Residualization-Semantic Residualization. In this method, the multi-rate depth-wise dilated convolutions take a simpler role in feature extraction: performing simple semantic-based morphological filtering with one desired receptive field in the second step based on each concise feature map of region form provided by the first step, to improve their efficiency. Moreover, the dilation rates and the capacity of dilated convolutions for each network stage are elaborated to fully utilize all the feature maps of region form that can be achieved.Accordingly, we design a novel Dilation-wise Residual (DWR) module and a Simple Inverted Residual (SIR) module for the high and low level network, respectively, and form a powerful DWR Segmentation (DWRSeg) network. Extensive experiments on the Cityscapes and CamVid datasets demonstrate the effectiveness of our method by achieving a state-of-the-art trade-off between accuracy and inference speed, in addition to being lighter weight. Without pretraining or resorting to any training trick, we achieve an mIoU of 72.7% on the Cityscapes test set at a speed of 319.5 FPS on one NVIDIA GeForce GTX 1080 Ti card, which exceeds the latest methods of a speed of 69.5 FPS and 0.8% mIoU. The code and trained models are publicly available.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · DNN · Weight · Processing(編程語言) · Performer ·
2023 年 10 月 27 日

The constant growth of DNNs makes them challenging to implement and run efficiently on traditional compute-centric architectures. Some accelerators have attempted to add more compute units and on-chip buffers to solve the memory wall problem without much success, and sometimes even worsening the issue since more compute units also require higher memory bandwidth. Prior works have proposed the design of memory-centric architectures based on the Near-Data Processing (NDP) paradigm. NDP seeks to break the memory wall by moving the computations closer to the memory hierarchy, reducing the data movements and their cost as much as possible. The 3D-stacked memory is especially appealing for DNN accelerators due to its high-density/low-energy storage and near-memory computation capabilities to perform the DNN operations massively in parallel. However, memory accesses remain as the main bottleneck for running modern DNNs efficiently. To improve the efficiency of DNN inference we present QeiHaN, a hardware accelerator that implements a 3D-stacked memory-centric weight storage scheme to take advantage of a logarithmic quantization of activations. In particular, since activations of FC and CONV layers of modern DNNs are commonly represented as powers of two with negative exponents, QeiHaN performs an implicit in-memory bit-shifting of the DNN weights to reduce memory activity. Only the meaningful bits of the weights required for the bit-shift operation are accessed. Overall, QeiHaN reduces memory accesses by 25\% compared to a standard memory organization. We evaluate QeiHaN on a popular set of DNNs. On average, QeiHaN provides $4.3x$ speedup and $3.5x$ energy savings over a Neurocube-like accelerator.

We introduce IMP-MARL, an open-source suite of multi-agent reinforcement learning (MARL) environments for large-scale Infrastructure Management Planning (IMP), offering a platform for benchmarking the scalability of cooperative MARL methods in real-world engineering applications. In IMP, a multi-component engineering system is subject to a risk of failure due to its components' damage condition. Specifically, each agent plans inspections and repairs for a specific system component, aiming to minimise maintenance costs while cooperating to minimise system failure risk. With IMP-MARL, we release several environments including one related to offshore wind structural systems, in an effort to meet today's needs to improve management strategies to support sustainable and reliable energy systems. Supported by IMP practical engineering environments featuring up to 100 agents, we conduct a benchmark campaign, where the scalability and performance of state-of-the-art cooperative MARL methods are compared against expert-based heuristic policies. The results reveal that centralised training with decentralised execution methods scale better with the number of agents than fully centralised or decentralised RL approaches, while also outperforming expert-based heuristic policies in most IMP environments. Based on our findings, we additionally outline remaining cooperation and scalability challenges that future MARL methods should still address. Through IMP-MARL, we encourage the implementation of new environments and the further development of MARL methods.

Resistive random access memory (ReRAM)-based processing-in-memory (PIM) architectures have demonstrated great potential to accelerate Deep Neural Network (DNN) training/inference. However, the computational accuracy of analog PIM is compromised due to the non-idealities, such as the conductance variation of ReRAM cells. The impact of these non-idealities worsens as the number of concurrently activated wordlines and bitlines increases. To guarantee computational accuracy, only a limited number of wordlines and bitlines of the crossbar array can be turned on concurrently, significantly reducing the achievable parallelism of the architecture. While the constraints on parallelism limit the efficiency of the accelerators, they also provide a new opportunity for fine-grained mixed-precision quantization. To enable efficient DNN inference on practical ReRAM-based accelerators, we propose an algorithm-architecture co-design framework called \underline{B}lock-\underline{W}ise mixed-precision \underline{Q}uantization (BWQ). At the algorithm level, BWQ-A introduces a mixed-precision quantization scheme at the block level, which achieves a high weight and activation compression ratio with negligible accuracy degradation. We also present the hardware architecture design BWQ-H, which leverages the low-bit-width models achieved by BWQ-A to perform high-efficiency DNN inference on ReRAM devices. BWQ-H also adopts a novel precision-aware weight mapping method to increase the ReRAM crossbar's throughput. Our evaluation demonstrates the effectiveness of BWQ, which achieves a 6.08x speedup and a 17.47x energy saving on average compared to existing ReRAM-based architectures.

Large language models (LLMs) demonstrate their promise in tackling complicated practical challenges by combining action-based policies with chain of thought (CoT) reasoning. Having high-quality prompts on hand, however, is vital to the framework's effectiveness. Currently, these prompts are handcrafted utilizing extensive human labor, resulting in CoT policies that frequently fail to generalize. Human intervention is also required in order to develop grounding functions that ensure low-level controllers appropriately process CoT reasoning. In this paper, we take the first step towards a fully integrated end-to-end framework for task-solving in real settings employing complicated reasoning. To that purpose, we offer a new leader-follower bilevel framework capable of learning to ask relevant questions (prompts) and subsequently undertaking reasoning to guide the learning of actions to be performed in an environment. A good prompt should make introspective revisions based on historical findings, leading the CoT to consider the anticipated goals. A prompt-generator policy has its own aim in our system, allowing it to adapt to the action policy and automatically root the CoT process towards outputs that lead to decisive, high-performing actions. Meanwhile, the action policy is learning how to use the CoT outputs to take specific actions. Our empirical data reveal that our system outperforms leading methods in agent learning benchmarks such as Overcooked and FourRoom.

This paper provides statistical sample complexity bounds for score-matching and its applications in causal discovery. We demonstrate that accurate estimation of the score function is achievable by training a standard deep ReLU neural network using stochastic gradient descent. We establish bounds on the error rate of recovering causal relationships using the score-matching-based causal discovery method of Rolland et al. [2022], assuming a sufficiently good estimation of the score function. Finally, we analyze the upper bound of score-matching estimation within the score-based generative modeling, which has been applied for causal discovery but is also of independent interest within the domain of generative models.

Today, using Large-scale generative Language Models (LLMs) it is possible to simulate free responses to interview questions like those traditionally analyzed using qualitative research methods. Qualitative methodology encompasses a broad family of techniques involving manual analysis of open-ended interviews or conversations conducted freely in natural language. Here we consider whether artificial "silicon participants" generated by LLMs may be productively studied using qualitative methods aiming to produce insights that could generalize to real human populations. The key concept in our analysis is algorithmic fidelity, a term introduced by Argyle et al. (2023) capturing the degree to which LLM-generated outputs mirror human sub-populations' beliefs and attitudes. By definition, high algorithmic fidelity suggests latent beliefs elicited from LLMs may generalize to real humans, whereas low algorithmic fidelity renders such research invalid. Here we used an LLM to generate interviews with silicon participants matching specific demographic characteristics one-for-one with a set of human participants. Using framework-based qualitative analysis, we showed the key themes obtained from both human and silicon participants were strikingly similar. However, when we analyzed the structure and tone of the interviews we found even more striking differences. We also found evidence of the hyper-accuracy distortion described by Aher et al. (2023). We conclude that the LLM we tested (GPT-3.5) does not have sufficient algorithmic fidelity to expect research on it to generalize to human populations. However, the rapid pace of LLM research makes it plausible this could change in the future. Thus we stress the need to establish epistemic norms now around how to assess validity of LLM-based qualitative research, especially concerning the need to ensure representation of heterogeneous lived experiences.

As autonomous driving technology matures, end-to-end methodologies have emerged as a leading strategy, promising seamless integration from perception to control via deep learning. However, existing systems grapple with challenges such as unexpected open set environments and the complexity of black-box models. At the same time, the evolution of deep learning introduces larger, multimodal foundational models, offering multi-modal visual and textual understanding. In this paper, we harness these multimodal foundation models to enhance the robustness and adaptability of autonomous driving systems, enabling out-of-distribution, end-to-end, multimodal, and more explainable autonomy. Specifically, we present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text. To do so, we introduce a method to extract nuanced spatial (pixel/patch-aligned) features from transformers to enable the encapsulation of both spatial and semantic features. Our approach (i) demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations, and (ii) allows the incorporation of latent space simulation (via text) for improved training (data augmentation via text) and policy debugging. We encourage the reader to check our explainer video at //www.youtube.com/watch?v=4n-DJf8vXxo&feature=youtu.be and to view the code and demos on our project webpage at //drive-anywhere.github.io/.

Due to the limited availability of data, existing few-shot learning methods trained from scratch fail to achieve satisfactory performance. In contrast, large-scale pre-trained models such as CLIP demonstrate remarkable few-shot and zero-shot capabilities. To enhance the performance of pre-trained models for downstream tasks, fine-tuning the model on downstream data is frequently necessary. However, fine-tuning the pre-trained model leads to a decrease in its generalizability in the presence of distribution shift, while the limited number of samples in few-shot learning makes the model highly susceptible to overfitting. Consequently, existing methods for fine-tuning few-shot learning primarily focus on fine-tuning the model's classification head or introducing additional structure. In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align). Our method aims to bolster the model's generalizability by preserving the consistency of spurious features across the fine-tuning process. Extensive experimental results validate the efficacy of our approach for both ID and OOD tasks. Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements. Our code can be found in //github.com/skingorz/FD-Align.

Recent studies focus on developing efficient systems for acoustic scene classification (ASC) using convolutional neural networks (CNNs), which typically consist of consecutive kernels. This paper highlights the benefits of using separate kernels as a more powerful and efficient design approach in ASC tasks. Inspired by the time-frequency nature of audio signals, we propose TF-SepNet, a CNN architecture that separates the feature processing along the time and frequency dimensions. Features resulted from the separate paths are then merged by channels and directly forwarded to the classifier. Instead of the conventional two dimensional (2D) kernel, TF-SepNet incorporates one dimensional (1D) kernels to reduce the computational costs. Experiments have been conducted using the TAU Urban Acoustic Scene 2022 Mobile development dataset. The results show that TF-SepNet outperforms similar state-of-the-arts that use consecutive kernels. A further investigation reveals that the separate kernels lead to a larger effective receptive field (ERF), which enables TF-SepNet to capture more time-frequency features.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司