亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fine-tuning pre-trained models provides significant advantages in downstream performance. The ubiquitous nature of pre-trained models such as BERT and its derivatives in natural language processing has also led to a proliferation of task-specific fine-tuned models. As these models typically only perform one task well, additional training or ensembling is required in multi-task scenarios. The growing field of model merging provides a solution, dealing with the challenge of combining multiple task-specific models into a single multi-task model. In this study, we introduce a novel model merging method for Transformers, combining insights from previous work in Fisher-weighted averaging and the use of Fisher information in model pruning. Utilizing the Fisher information of mask nodes within the Transformer architecture, we devise a computationally efficient weighted-averaging scheme. Our method exhibits a regular and significant performance increase across various models in the BERT family, outperforming full-scale Fisher-weighted averaging in a fraction of the computational cost, with baseline performance improvements of up to +6.5 and a speedup of 57.4x in the biggest model. Our results prove the potential of our method in current multi-task learning environments and suggest its scalability and adaptability to new model architectures and learning scenarios.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 無監督 · 穩健性 · 最優化 ·
2024 年 5 月 1 日

This paper focuses on training a robust RGB-D registration model without ground-truth pose supervision. Existing methods usually adopt a pairwise training strategy based on differentiable rendering, which enforces the photometric and the geometric consistency between the two registered frames as supervision. However, this frame-to-frame framework suffers from poor multi-view consistency due to factors such as lighting changes, geometry occlusion and reflective materials. In this paper, we present NeRF-UR, a novel frame-to-model optimization framework for unsupervised RGB-D registration. Instead of frame-to-frame consistency, we leverage the neural radiance field (NeRF) as a global model of the scene and use the consistency between the input and the NeRF-rerendered frames for pose optimization. This design can significantly improve the robustness in scenarios with poor multi-view consistency and provides better learning signal for the registration model. Furthermore, to bootstrap the NeRF optimization, we create a synthetic dataset, Sim-RGBD, through a photo-realistic simulator to warm up the registration model. By first training the registration model on Sim-RGBD and later unsupervisedly fine-tuning on real data, our framework enables distilling the capability of feature extraction and registration from simulation to reality. Our method outperforms the state-of-the-art counterparts on two popular indoor RGB-D datasets, ScanNet and 3DMatch. Code and models will be released for paper reproduction.

The use of automatic short answer grading (ASAG) models may help alleviate the time burden of grading while encouraging educators to frequently incorporate open-ended items in their curriculum. However, current state-of-the-art ASAG models are large neural networks (NN) often described as "black box", providing no explanation for which characteristics of an input are important for the produced output. This inexplicable nature can be frustrating to teachers and students when trying to interpret, or learn from an automatically-generated grade. To create a powerful yet intelligible ASAG model, we experiment with a type of model called a Neural Additive Model that combines the performance of a NN with the explainability of an additive model. We use a Knowledge Integration (KI) framework from the learning sciences to guide feature engineering to create inputs that reflect whether a student includes certain ideas in their response. We hypothesize that indicating the inclusion (or exclusion) of predefined ideas as features will be sufficient for the NAM to have good predictive power and interpretability, as this may guide a human scorer using a KI rubric. We compare the performance of the NAM with another explainable model, logistic regression, using the same features, and to a non-explainable neural model, DeBERTa, that does not require feature engineering.

Data augmentation serves as a popular regularization technique to combat overfitting challenges in neural networks. While automatic augmentation has demonstrated success in image classification tasks, its application to time-series problems, particularly in long-term forecasting, has received comparatively less attention. To address this gap, we introduce a time-series automatic augmentation approach named TSAA, which is both efficient and easy to implement. The solution involves tackling the associated bilevel optimization problem through a two-step process: initially training a non-augmented model for a limited number of epochs, followed by an iterative split procedure. During this iterative process, we alternate between identifying a robust augmentation policy through Bayesian optimization and refining the model while discarding suboptimal runs. Extensive evaluations on challenging univariate and multivariate forecasting benchmark problems demonstrate that TSAA consistently outperforms several robust baselines, suggesting its potential integration into prediction pipelines.

Despite great success in modeling visual perception, deep neural network based image quality assessment (IQA) still remains unreliable in real-world applications due to its vulnerability to adversarial perturbations and the inexplicit black-box structure. In this paper, we propose to build a trustworthy IQA model via Causal Perception inspired Representation Learning (CPRL), and a score reflection attack method for IQA model. More specifically, we assume that each image is composed of Causal Perception Representation (CPR) and non-causal perception representation (N-CPR). CPR serves as the causation of the subjective quality label, which is invariant to the imperceptible adversarial perturbations. Inversely, N-CPR presents spurious associations with the subjective quality label, which may significantly change with the adversarial perturbations. To extract the CPR from each input image, we develop a soft ranking based channel-wise activation function to mediate the causally sufficient (beneficial for high prediction accuracy) and necessary (beneficial for high robustness) deep features, and based on intervention employ minimax game to optimize. Experiments on four benchmark databases show that the proposed CPRL method outperforms many state-of-the-art adversarial defense methods and provides explicit model interpretation.

We overview recent progress on the longstanding problem of incremental view maintenance (IVM), with a focus on the fine-grained complexity and optimality of IVM for classes of conjunctive queries. This theoretical progress guided the development of IVM engines that reported practical benefits in academic papers and industrial settings. When taken in isolation, each of the reported advancements is but a small increment. Yet when taken together, they may well pave the way to a deeper understanding of the IVM problem. This paper accompanies the invited Gems of PODS 2024 talk with the same title. Some of the works highlighted in this paper are based on prior or on-going collaborations with: Ahmet Kara, Milos Nikolic, and Haozhe Zhang in the F-IVM project; and Mahmoud Abo Khamis, Niko G\"obel, Hung Ngo, and Dan Suciu at RelationalAI.

Despite significant progress in robotic systems for operation within human-centric environments, existing models still heavily rely on explicit human commands to identify and manipulate specific objects. This limits their effectiveness in environments where understanding and acting on implicit human intentions are crucial. In this study, we introduce a novel task: reasoning grasping, where robots need to generate grasp poses based on indirect verbal instructions or intentions. To accomplish this, we propose an end-to-end reasoning grasping model that integrates a multi-modal Large Language Model (LLM) with a vision-based robotic grasping framework. In addition, we present the first reasoning grasping benchmark dataset generated from the GraspNet-1 billion, incorporating implicit instructions for object-level and part-level grasping, and this dataset will soon be available for public access. Our results show that directly integrating CLIP or LLaVA with the grasp detection model performs poorly on the challenging reasoning grasping tasks, while our proposed model demonstrates significantly enhanced performance both in the reasoning grasping benchmark and real-world experiments.

Computer programs containing calls to linear solvers are a known challenge for automatic differentiation. Previous publications advise against differentiating through the low-level solver implementation, and instead advocate for high-level approaches that express the derivative in terms of a modified linear system that can be solved with a separate solver call. Despite this ubiquitous advice, we are not aware of prior work comparing the accuracy of both approaches. With this article we thus empirically study a simple question: What happens if we ignore common wisdom, and differentiate through linear solvers?

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Emotion plays an important role in detecting fake news online. When leveraging emotional signals, the existing methods focus on exploiting the emotions of news contents that conveyed by the publishers (i.e., publisher emotion). However, fake news is always fabricated to evoke high-arousal or activating emotions of people to spread like a virus, so the emotions of news comments that aroused by the crowd (i.e., social emotion) can not be ignored. Furthermore, it needs to be explored whether there exists a relationship between publisher emotion and social emotion (i.e., dual emotion), and how the dual emotion appears in fake news. In the paper, we propose Dual Emotion Features to mine dual emotion and the relationship between them for fake news detection. And we design a universal paradigm to plug it into any existing detectors as an enhancement. Experimental results on three real-world datasets indicate the effectiveness of the proposed features.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

北京阿比特科技有限公司