This paper proposes a new technique based on a non-linear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modelled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighbourhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.
Nonstationary Gaussian process models can capture complex spatially varying dependence structures in spatial datasets. However, the large number of observations in modern datasets makes fitting such models computationally intractable with conventional dense linear algebra. In addition, derivative-free or even first-order optimization methods can be slow to converge when estimating many spatially varying parameters. We present here a computational framework that couples an algebraic block-diagonal plus low-rank covariance matrix approximation with stochastic trace estimation to facilitate the efficient use of second-order solvers for maximum likelihood estimation of Gaussian process models with many parameters. We demonstrate the effectiveness of these methods by simultaneously fitting 192 parameters in the popular nonstationary model of Paciorek and Schervish using 107,600 sea surface temperature anomaly measurements.
Supervised learning methods can solve the given problem in the presence of a large set of labeled data. However, the acquisition of a dataset covering all the target classes typically requires manual labeling which is expensive and time-consuming. Zero-shot learning models are capable of classifying the unseen concepts by utilizing their semantic information. The present study introduces image embeddings as side information on zero-shot audio classification by using a nonlinear acoustic-semantic projection. We extract the semantic image representations from the Open Images dataset and evaluate the performance of the models on an audio subset of AudioSet using semantic information in different domains; image, audio, and textual. We demonstrate that the image embeddings can be used as semantic information to perform zero-shot audio classification. The experimental results show that the image and textual embeddings display similar performance both individually and together. We additionally calculate the semantic acoustic embeddings from the test samples to provide an upper limit to the performance. The results show that the classification performance is highly sensitive to the semantic relation between test and training classes and textual and image embeddings can reach up to the semantic acoustic embeddings when the seen and unseen classes are semantically similar.
Quantification of uncertainty in deep-neural-networks (DNN) based image registration algorithms plays a critical role in the deployment of image registration algorithms for clinical applications such as surgical planning, intraoperative guidance, and longitudinal monitoring of disease progression or treatment efficacy as well as in research-oriented processing pipelines. Currently available approaches for uncertainty estimation in DNN-based image registration algorithms may result in sub-optimal clinical decision making due to potentially inaccurate estimation of the uncertainty of the registration stems for the assumed parametric distribution of the registration latent space. We introduce NPBDREG, a fully non-parametric Bayesian framework for uncertainty estimation in DNN-based deformable image registration by combining an Adam optimizer with stochastic gradient Langevin dynamics (SGLD) to characterize the underlying posterior distribution through posterior sampling. Thus, it has the potential to provide uncertainty estimates that are highly correlated with the presence of out of distribution data. We demonstrated the added-value of NPBDREG, compared to the baseline probabilistic VoxelMorph model (PrVXM), on brain MRI image registration using $390$ image pairs from four publicly available databases: MGH10, CMUC12, ISBR18 and LPBA40. The NPBDREG shows a better correlation of the predicted uncertainty with out-of-distribution data ($r>0.95$ vs. $r<0.5$) as well as a 7.3%improvement in the registration accuracy (Dice score, $0.74$ vs. $0.69$, $p \ll 0.01$), and 18% improvement in registration smoothness (percentage of folds in the deformation field, 0.014 vs. 0.017, $p \ll 0.01$). Finally, NPBDREG demonstrated a better generalization capability for data corrupted by a mixed structure noise (Dice score of $0.73$ vs. $0.69$, $p \ll 0.01$) compared to the baseline PrVXM approach.
To support the application scenarios where high-resolution (HR) images are urgently needed, various single image super-resolution (SISR) algorithms are developed. However, SISR is an ill-posed inverse problem, which may bring artifacts like texture shift, blur, etc. to the reconstructed images, thus it is necessary to evaluate the quality of super-resolution images (SRIs). Note that most existing image quality assessment (IQA) methods were developed for synthetically distorted images, which may not work for SRIs since their distortions are more diverse and complicated. Therefore, in this paper, we propose a no-reference deep-learning image quality assessment method based on frequency maps because the artifacts caused by SISR algorithms are quite sensitive to frequency information. Specifically, we first obtain the high-frequency map (HM) and low-frequency map (LM) of SRI by using Sobel operator and piecewise smooth image approximation. Then, a two-stream network is employed to extract the quality-aware features of both frequency maps. Finally, the features are regressed into a single quality value using fully connected layers. The experimental results show that our method outperforms all compared IQA models on the selected three super-resolution quality assessment (SRQA) databases.
Two of the most significant challenges in uncertainty quantification pertain to the high computational cost for simulating complex physical models and the high dimension of the random inputs. In applications of practical interest, both of these problems are encountered, and standard methods either fail or are not feasible. To overcome the current limitations, we present a generalized formulation of a Bayesian multi-fidelity Monte-Carlo (BMFMC) framework that can exploit lower-fidelity model versions in a small data regime. The goal of our analysis is an efficient and accurate estimation of the complete probabilistic response for high-fidelity models. BMFMC circumvents the curse of dimensionality by learning the relationship between the outputs of a reference high-fidelity model and potentially several lower-fidelity models. While the continuous formulation is mathematically exact and independent of the low-fidelity model's accuracy, we address challenges associated with the small data regime (i.e., only a small number of 50 to 300 high-fidelity model runs can be performed). Specifically, we complement the formulation with a set of informative input features at no extra cost. Despite the inaccurate and noisy information that some low-fidelity models provide, we demonstrate that accurate and certifiable estimates for the quantities of interest can be obtained for uncertainty quantification problems in high stochastic dimensions, with significantly fewer high-fidelity model runs than state-of-the-art methods for uncertainty quantification. We illustrate our approach by applying it to challenging numerical examples such as Navier-Stokes flow simulations and fluid-structure interaction problems.
Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.