亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, there has been an increasing adoption of differential privacy guided algorithms for privacy-preserving machine learning tasks. However, the use of such algorithms comes with trade-offs in terms of algorithmic fairness, which has been widely acknowledged. Specifically, we have empirically observed that the classical collaborative filtering method, trained by differentially private stochastic gradient descent (DP-SGD), results in a disparate impact on user groups with respect to different user engagement levels. This, in turn, causes the original unfair model to become even more biased against inactive users. To address the above issues, we propose \textbf{DP-Fair}, a two-stage framework for collaborative filtering based algorithms. Specifically, it combines differential privacy mechanisms with fairness constraints to protect user privacy while ensuring fair recommendations. The experimental results, based on Amazon datasets, and user history logs collected from Etsy, one of the largest e-commerce platforms, demonstrate that our proposed method exhibits superior performance in terms of both overall accuracy and user group fairness on both shallow and deep recommendation models compared to vanilla DP-SGD.

相關內容

協同(tong)過(guo)濾(英語:Collaborative Filtering),簡單來說是利(li)用(yong)某興(xing)(xing)(xing)(xing)趣(qu)相投、擁有共同(tong)經(jing)驗(yan)之(zhi)群(qun)體(ti)的(de)(de)喜好來推(tui)薦用(yong)戶感(gan)興(xing)(xing)(xing)(xing)趣(qu)的(de)(de)信息(xi),個人透過(guo)合(he)作的(de)(de)機制給予信息(xi)相當程度的(de)(de)回應(ying)(如(ru)評分(fen))并記錄下來以(yi)達到過(guo)濾的(de)(de)目(mu)的(de)(de)進而幫助(zhu)別(bie)人篩選信息(xi),回應(ying)不(bu)一定局限(xian)于特別(bie)感(gan)興(xing)(xing)(xing)(xing)趣(qu)的(de)(de),特別(bie)不(bu)感(gan)興(xing)(xing)(xing)(xing)趣(qu)信息(xi)的(de)(de)紀(ji)錄也相當重(zhong)要。協同(tong)過(guo)濾又可分(fen)為(wei)(wei)評比(rating)或者群(qun)體(ti)過(guo)濾(social filtering)。其(qi)后成(cheng)為(wei)(wei)電(dian)子商(shang)務當中(zhong)很重(zhong)要的(de)(de)一環(huan),即根據某顧客以(yi)往的(de)(de)購(gou)(gou)買(mai)行為(wei)(wei)以(yi)及從具(ju)有相似購(gou)(gou)買(mai)行為(wei)(wei)的(de)(de)顧客群(qun)的(de)(de)購(gou)(gou)買(mai)行為(wei)(wei)去推(tui)薦這個顧客其(qi)“可能喜歡的(de)(de)品項(xiang)”,也就是借由社群(qun)的(de)(de)喜好提供(gong)個人化(hua)的(de)(de)信息(xi)、商(shang)品等的(de)(de)推(tui)薦服務。除了推(tui)薦之(zhi)外,近(jin)年來也發展(zhan)出(chu)數學運算讓系統自動計算喜好的(de)(de)強弱進而去蕪存菁使得過(guo)濾的(de)(de)內(nei)容更(geng)有依(yi)據,也許不(bu)是百(bai)分(fen)之(zhi)百(bai)完全(quan)準確,但由于加入(ru)了強弱的(de)(de)評比讓這個概(gai)念(nian)的(de)(de)應(ying)用(yong)更(geng)為(wei)(wei)廣泛,除了電(dian)子商(shang)務之(zhi)外尚有信息(xi)檢索領域、網絡個人影音柜、個人書架等的(de)(de)應(ying)用(yong)等。

Recommender systems often suffer from popularity bias, where popular items are overly recommended while sacrificing unpopular items. Existing researches generally focus on ensuring the number of recommendations exposure of each item is equal or proportional, using inverse propensity weighting, causal intervention, or adversarial training. However, increasing the exposure of unpopular items may not bring more clicks or interactions, resulting in skewed benefits and failing in achieving real reasonable popularity debiasing. In this paper, we propose a new criterion for popularity debiasing, i.e., in an unbiased recommender system, both popular and unpopular items should receive Interactions Proportional to the number of users who Like it, namely IPL criterion. Under the guidance of the criterion, we then propose a debiasing framework with IPL regularization term which is theoretically shown to achieve a win-win situation of both popularity debiasing and recommendation performance. Experiments conducted on four public datasets demonstrate that when equipping two representative collaborative filtering models with our framework, the popularity bias is effectively alleviated while maintaining the recommendation performance.

We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. (2021); Narayanan et al. (2022), but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with an output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.

Large language models (LLMs) have had a profound impact on numerous aspects of daily life including natural language processing, content generation, research methodologies and so on. However, one crucial issue concerning the inference results of large language models is security and privacy. In many scenarios, the results generated by LLMs could possibly leak many confidential or copyright information. A recent beautiful and breakthrough work [Vyas, Kakade and Barak 2023] focus on such privacy issue of the LLMs from theoretical perspective. It is well-known that computing the attention matrix is one of the major task during the LLMs computation. Thus, how to give a provable privately guarantees of computing the attention matrix is an important research direction. Previous work [Alman and Song 2023, Brand, Song and Zhou 2023] have proposed provable tight result for fast computation of attention without considering privacy concerns. One natural mathematical formulation to quantity the privacy in theoretical computer science graduate school textbook is differential privacy. Inspired by [Vyas, Kakade and Barak 2023], in this work, we provide a provable result for showing how to differentially private approximate the attention matrix. From technique perspective, our result replies on a pioneering work in the area of differential privacy by [Alabi, Kothari, Tankala, Venkat and Zhang 2022].

Recent studies show that graph neural networks (GNNs) are prevalent to model high-order relationships for collaborative filtering (CF). Towards this research line, graph contrastive learning (GCL) has exhibited powerful performance in addressing the supervision label shortage issue by learning augmented user and item representations. While many of them show their effectiveness, two key questions still remain unexplored: i) Most existing GCL-based CF models are still limited by ignoring the fact that user-item interaction behaviors are often driven by diverse latent intent factors (e.g., shopping for family party, preferred color or brand of products); ii) Their introduced non-adaptive augmentation techniques are vulnerable to noisy information, which raises concerns about the model's robustness and the risk of incorporating misleading self-supervised signals. In light of these limitations, we propose a Disentangled Contrastive Collaborative Filtering framework (DCCF) to realize intent disentanglement with self-supervised augmentation in an adaptive fashion. With the learned disentangled representations with global context, our DCCF is able to not only distill finer-grained latent factors from the entangled self-supervision signals but also alleviate the augmentation-induced noise. Finally, the cross-view contrastive learning task is introduced to enable adaptive augmentation with our parameterized interaction mask generator. Experiments on various public datasets demonstrate the superiority of our method compared to existing solutions. Our model implementation is released at the link //github.com/HKUDS/DCCF.

Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.

This paper is the first to attempt differentially private (DP) topological data analysis (TDA), producing near-optimal private persistence diagrams. We analyze the sensitivity of persistence diagrams in terms of the bottleneck distance, and we show that the commonly used \v{C}ech complex has sensitivity that does not decrease as the sample size $n$ increases. This makes it challenging for the persistence diagrams of \v{C}ech complexes to be privatized. As an alternative, we show that the persistence diagram obtained by the $L^1$-distance to measure (DTM) has sensitivity $O(1/n)$. Based on the sensitivity analysis, we propose using the exponential mechanism whose utility function is defined in terms of the bottleneck distance of the $L^1$-DTM persistence diagrams. We also derive upper and lower bounds of the accuracy of our privacy mechanism; the obtained bounds indicate that the privacy error of our mechanism is near-optimal. We demonstrate the performance of our privatized persistence diagrams through simulations as well as on a real dataset tracking human movement.

Obtaining high-quality data for collaborative training of machine learning models can be a challenging task due to A) the regulatory concerns and B) lack of incentive to participate. The first issue can be addressed through the use of privacy enhancing technologies (PET), one of the most frequently used one being differentially private (DP) training. The second challenge can be addressed by identifying which data points can be beneficial for model training and rewarding data owners for sharing this data. However, DP in deep learning typically adversely affects atypical (often informative) data samples, making it difficult to assess the usefulness of individual contributions. In this work we investigate how to leverage gradient information to identify training samples of interest in private training settings. We show that there exist techniques which are able to provide the clients with the tools for principled data selection even in strictest privacy settings.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司