亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

深度學習的研究在許多機器學習任務上產生了最先進的結果。大多數的進步都是由直覺和通過試驗和錯誤進行的大規模探索推動的。因此,目前理論落后于實踐。ML社區并不完全理解為什么最好的方法是有效的。來自UIUC Matus Telgarsky教授撰寫了關于深度學習理論筆記,值得關注。

地址: //mjt.cs.illinois.edu/dlt/

這些筆記的哲學。兩個關鍵的觀點決定了到目前為止所包含的內容。 我的目標是對文獻中出現的東西提供簡化的證明,理想情況下,把困難的東西簡化成適合一節課的東西。 我主要關注通過標準(通常是ReLU)前饋網絡實現IID數據的二進制分類的低測試誤差的經典觀點。

內容組織:

  • 近似 (從第1節開始): 給定一個分類問題,存在一個深度網絡,在分布上實現低誤差。

  • 優化 (從第9節開始): 對于一個分類問題,給定一個有限的訓練集,存在尋找低訓練誤差和低復雜度的預測器的算法。

  • 泛化 (從第16節開始): 對于低復雜度的網絡,訓練和測試誤差之間的差距很小。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

這些是我在2020年秋季在莫斯科物理與技術研究所(MIPT)和Yandex數據分析學院(YSDA)做的演講筆記。這些筆記涵蓋了初始化、損失曲面、泛化和神經切線核理論的一些方面。雖然許多其他的主題(如表達性,平均場理論,雙下降現象)在當前版本中缺失,我們計劃在未來的修訂中添加它們。

//www.zhuanzhi.ai/paper/2fc29465d202ea8e657db29311027617

付費5元查看完整內容

凸優化提供了一個統一的框架,以獲得數據分析問題的數值解決方案,并在充分理解的計算成本下,以可證明的統計保證正確性。

為此,本課程回顧了大數據之后在凸優化和統計分析方面的最新進展。我們提供了新興的凸數據模型及其統計保證的概述,描述了可擴展的數值求解技術,如隨機,一階和原對偶方法。在整個課程中,我們將數學概念運用到大規模的應用中,包括機器學習、信號處理和統計。

在整個課程中,我們將數學概念運用到大規模的應用中,包括機器學習、信號處理和統計。

//www.epfl.ch/labs/lions/teaching/ee-556-mathematics-of-data-from-theory-to-computation/

本課程包括以下主題

第一講:緒論。模型和數據的作用。最大似然公式。估計和預測的樣本復雜度界限。

第二講:計算的作用。優化算法的挑戰。最優測度。結構優化。梯度下降法。梯度下降的收斂速度。

第三講:收斂速度的最優性。加速梯度下降法。全部復雜性的概念。隨機梯度下降法。

第四講:簡潔的信號模型。壓縮傳感。估計和預測的樣本復雜度界限。非光滑優化對優化算法的挑戰。

第五講:近端算子介紹。近端梯度方法。線性最小化神諭。約束優化的條件梯度法。

第六講:時間-數據的權衡。方差減少以改進權衡。

第七講:深度學習的數學介紹。雙下降曲線和過度參數化。隱式規則化。

第八講:非凸優化中的結構。最優的措施。逃避鞍點。自適應梯度方法。

第九講:對抗性機器學習和生成式對抗性網絡(GANs)。Wasserstein GAN。極大極小優化的難點。

第十講: 原對偶優化- i:極大極小問題的基礎。梯度下降-上升法的陷阱。

第十一講: 原對偶優化- ii:額外梯度法。Chambolle-Pock算法。隨機非方法。

第十二講:原對偶III:拉格朗日梯度法。拉格朗日條件梯度法。

付費5元查看完整內容

在過去的十年里,神經網絡在視覺、語音、語言理解、醫學、機器人和游戲等領域取得了驚人的成果。人們原本以為,這種成功需要克服理論上存在的重大障礙。畢竟,深度學習優化是非凸的、高度非線性的、高維的,那么我們為什么能夠訓練這些網絡呢?在許多情況下,它們擁有的參數遠遠多于記憶數據所需的參數,那么為什么它們能夠很好地推廣呢?盡管這些主題已經占據了機器學習研究領域的大部分注意力,但當涉及到更簡單的模型時,神經網絡領域的原則是先數據訓練再說。顯然,這招奏效了。

//www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/

結果,神經網絡的實際成功已經超過了我們理解它們如何工作的能力。這門課是關于開發概念工具來理解當神經網絡訓練時會發生什么。其中一些思想早在幾十年前就已經形成了(可能已經被社區的大部分人遺忘了),而另一些思想今天才剛剛開始被理解。我將試圖傳達我們最好的現代理解,盡管它可能不完整。

這門課從優化中汲取靈感,它不是一門優化課。一方面,優化的研究通常是指令性的,從優化問題的信息和明確定義的目標(如在特定規范下快速收斂)開始,并找出保證實現該目標的計劃。對于現代神經網絡來說,分析通常是描述性的: 采用在使用的程序,并找出它們(似乎)有效的原因。希望這種理解能讓我們改進算法。

與優化研究的另一個區別是,目標不是簡單地擬合一個有限的訓練集,而是一般化。盡管神經網絡有巨大的能力,但為什么它能泛化與訓練的動態密切相關。因此,如果我們從優化中引入一個想法,我們不僅需要考慮它是否會更快地最小化成本函數,還需要考慮它是否以一種有利于泛化的方式實現。

這類應用不會為您提供在ImageNet上實現最先進性能的方法。它也不是那種為了證明定理而去證明定理的理論課。相反,我們的目的是為您提供概念性工具,以便您在任何特定情況下推斷出影響訓練的因素。

除了讓你的網絡更好地訓練之外,學習神經網絡訓練動力學的另一個重要原因是,許多現代架構本身就足夠強大,可以進行優化。這可能是因為我們在體系結構中明確地構建了優化,就像在MAML或深度均衡模型中那樣。或者,我們可能只是在大量數據上訓練一個靈活的架構,然后發現它具有驚人的推理能力,就像GPT3一樣。不管怎樣,如果網絡架構本身在優化某些東西,那么外部訓練過程就會與本課程中討論的問題糾纏在一起,不管我們喜歡與否。為了有希望理解它提出的解決方案,我們需要理解問題。因此,本課程將以雙層優化結束,利用課程中涵蓋的所有內容。

目錄內容:

  • 線性回歸

我們將通過分析一個簡單的模型開始這門課,梯度下降動力學可以被精確地確定:線性回歸。盡管線性回歸很簡單,但它提供了對神經網絡訓練驚人的洞察力。我們將使用線性回歸來理解兩種神經網絡訓練現象: 為什么對輸入進行歸一化是一個好策略,以及增加維度可以減少過擬合。

  • 泰勒近似

線性化是我們理解非線性系統最重要的工具之一。我們將涵蓋神經網絡的一階泰勒近似(梯度,方向導數)和二階近似(Hessian)。我們將看到如何用雅可比向量乘積有效地計算它們。我們將使用Hessian診斷緩慢收斂和解釋網絡預測。

  • 度量

度量給出了流形上距離的一個局部概念。在許多情況下,兩個神經網絡之間的距離可以更有效地定義為它們所代表的函數之間的距離,而不是權重向量之間的距離。這就引出了一個重要的優化工具,叫做自然梯度。

  • 二階優化

我們從幾個角度來激勵神經網絡的二階優化:最小化二階泰勒近似、預處理、不變性和近端優化。我們將看到如何使用共軛梯度或克羅內克因子近似來近似二階更新。

  • 自適應梯度法、歸一化和權值衰減

我們看看已經成為神經網絡訓練的主要內容的三個算法特征。我們試圖理解它們對動力學的影響,并找出構建深度學習系統的一些陷阱。

  • 無窮極限與過度參數化
  • Stochastic Optimization and Scaling
  • Bayesian Inference and Implicit Regularization
  • Dynamical Systems and Momentum
  • Differential Games
  • Bilevel Optimization
付費5元查看完整內容

本課程介紹了深度學習。通過本課程的學習,學生將學習深度學習的理論、模型、算法、實現以及最近的進展,并獲得深度神經網絡訓練的經驗。課程開始于機器學習的基本知識和一些經典深模型,其次是優化技術訓練神經網絡,實現大規模深度學習,多任務深度學習,深遷移度學習, 循環神經網絡, 應用深度學習計算機視覺和語音識別和理解深度學習工作的原因。課程要求學生具備微積分、線性代數、概率、統計和隨機過程的基礎知識。

//dl.ee.cuhk.edu.hk/index.html

2021年春季提供的課程:

  • 深度學習的最新進展,如深度強化學習,GAN, RNN與語言模型,視頻分析等。
  • 使用流行的DL工具包(例如PyTorch),實踐深度學習的優化經驗。
  • 最終的項目將帶領你完成整個研究過程: 提案構思,討論想法,進行實驗,撰寫報告,并通過演示分享你的工作!
付費5元查看完整內容

本課程首先介紹了機器學習、安全、隱私、對抗性機器學習和博弈論等主題。然后從研究的角度,討論各個課題和相關工作的新穎性和潛在的拓展性。通過一系列的閱讀和項目,學生將了解不同的機器學習算法,并分析它們的實現和安全漏洞,并培養開展相關主題的研究項目的能力。

//aisecure.github.io/TEACHING/2020_fall.html

Evasion Attacks Against Machine Learning Models (Against Classifiers) Evasion Attacks Against Machine Learning Models (Non-traditional Attacks) Evasion Attacks Against Machine Learning Models (Against Detectors/Generative odels/RL) Evasion Attacks Against Machine Learning Models (Blackbox Attacks) Detection Against Adversarial Attacks Defenses Against Adversarial Attacks (Empirical) Defenses Against Adversarial Attacks (Theoretic) Poisoning Attacks Against Machine Learning Models

付費5元查看完整內容

圖神經網絡(GNNs)是針對圖信號的信息處理體系結構。它們已經被開發出來,并在本課程中作為卷積神經網絡(CNNs)的推廣來介紹,它被用來在時間和空間上處理信號。這句話聽起來可能有些奇怪,這取決于你對神經網絡(NNs)和深度學習的了解程度。CNN不就是NN的特例嗎?GNN不也是這樣嗎?從嚴格意義上說,它們是存在的,但我們這門課的重點是涉及高維信號的大規模問題。在這些設置中,神經網絡無法伸縮。CNN為信號在時間和空間上提供可擴展的學習。GNNS支持圖信號的可擴展學習。

在本課程中,我們將在學習單特征和多特征GNN之前,介紹圖卷積濾波器和圖濾波器組。我們還將介紹相關的架構,如經常性的GNN。特別的重點將放在研究GNN的排列的等方差和圖變形的穩定性。這些特性提供了一個解釋的措施,可以觀察到的良好性能的GNNs經驗。我們還將在大量節點的極限范圍內研究GNN,以解釋不同節點數量的網絡間GNN的可遷移性。

//gnn.seas.upenn.edu/

Lecture 1: Machine Learning on Graphs 圖機器學習

圖神經網絡(GNNs)是一種具有廣泛適用性和非常有趣的特性的工具。可以用它們做很多事情,也有很多東西需要學習。在第一節課中,我們將回顧本課程的目標并解釋為什么我們應該關注GNN。我們還提供了未來的預覽。我們討論了在可擴展學習中利用結構的重要性,以及卷積是如何在歐幾里得空間中實現這一點的。我們進一步解釋如何將卷積推廣到圖,以及隨后將卷積神經網絡推廣到圖(卷積)神經網絡。

1.1 – Graph Neural Networks 圖神經網絡

在這門課程中,我希望我們能夠共同完成兩個目標。您將學習如何在實際應用程序中使用GNNs。也就是說,您將開發使用圖神經網絡在圖上表述機器學習問題的能力。你將學會訓練他們。你將學會評估它們。但你也會學到,你不能盲目地使用它們。你將學習到解釋他們良好的實證表現的基本原理。這些知識將允許您確定GNN適用或不適用的情況。

1.2 Machine Learning on Graphs: The Why 圖機器學習

我們關心GNN是因為它們使機器能夠在圖上學習。但我們為什么要關注圖機器學習呢?我們在這里詳述圖機器學習的原因。它為什么有趣?我們為什么要關心這個?我們關心的原因很簡單:因為圖表在信息處理中無處不在。

1.3 – Machine Learning on Graphs: The How

在討論了原因之后,我們來處理如何做。我們如何在圖上進行機器學習?這個問題的答案很簡單:我們應該使用神經網絡。我們應該這樣做,因為我們有豐富的經驗和理論證據證明神經網絡的價值。理解這些證據是本課程的目標之一。但在我們準備這么做之前,有一個潛在的阻礙因素:神經網絡必須利用結構來實現可擴展。

付費5元查看完整內容

//www.math.arizona.edu/~hzhang/math574.html

隨著信息技術的飛速發展,在各個領域產生了大量的科學和商業數據。例如,人類基因組數據庫項目已經收集了千兆字節的人類遺傳密碼數據。萬維網提供了另一個例子,它擁有由數百萬人使用的文本和多媒體信息組成的數十億Web頁面。

本課程涵蓋了現代數據科學技術,包括基本的統計學習理論及其應用。將介紹各種數據挖掘方法、算法和軟件工具,重點在概念和計算方面。將涵蓋生物信息學、基因組學、文本挖掘、社交網絡等方面的應用。

本課程著重于現代機器學習的統計分析、方法論和理論。它是為學生誰想要實踐先進的機器學習工具和算法,也了解理論原理和統計性質的算法。主題包括回歸、分類、聚類、降維和高維分析。

付費5元查看完整內容
北京阿比特科技有限公司