亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

推薦系統作為人工智能的一個重要應用,是最普遍的計算機輔助系統之一,幫助用戶找到潛在的興趣項目。近年來,人工智能應用的公平性問題引起了研究人員的廣泛關注。這些方法大多假定實例獨立,并設計復雜的模型來消除敏感信息,以促進公平。然而,推薦系統與這些方法有很大的不同,因為用戶和商品自然形成一個用戶-商品二部圖,并且在圖結構中相互協作。在本文中,我們提出了一種新的基于圖的技術來保證任何推薦模型的公平性。這里的公平性要求指的是在用戶建模過程中不暴露敏感特性集。具體來說,給定任何推薦模型的原始嵌入,我們學習一組過濾器,這些過濾器將每個用戶和每個物品的原始嵌入轉換為一個基于敏感特征集的過濾嵌入空間。對于每個用戶,這種轉換是在以用戶為中心的圖的對抗學習下實現的,以便在過濾后的用戶嵌入和該用戶的子圖結構之間模糊每個敏感特征。最后,大量的實驗結果清楚地表明了我們所提出的模型在公平推薦方面的有效性。

//github.com/newlei/FairGo

付費5元查看完整內容

相關內容

越來越多的人際互動在社交媒體平臺上數字化,并受到算法決策的影響,而確保這些算法的公平對待變得越來越重要。在這項工作中,我們研究了在社交媒體數據上訓練的協作過濾推薦系統中的性別偏見。我們研發了神經公平協同過濾(NFCF),這是一個在推薦與職業相關的敏感項目(如工作、學術集中程度或課程)時減少性別偏見的實用框架,使用了神經協同過濾的預訓練和微調方法,并輔以偏見糾正技術。我們分別在MovieLens數據集和Facebook數據集上展示了我們的方法在性別去偏見職業和大學專業推薦方面的效用,并取得了比一些最先進的模型更好的表現和更公平的行為。

//jfoulds.informationsystems.umbc.edu/papers/2021/Islam%20(2021)%20-%20Debiasing%20Career%20Recommendations%20with%20Neural%20Fair%20Collaborative%20Filtering%20(WWW).pdf

付費5元查看完整內容

雙曲空間提供了豐富的設置來學習具有優越屬性的嵌入,這些屬性在計算機視覺、自然語言處理和計算生物學等領域得到了利用。最近,有人提出了幾種雙曲線方法來學習推薦設置中的用戶和項目的魯棒表示。但是,這些方法不能捕獲推薦領域中通常存在的高階關系。另一方面,圖卷積神經網絡(GCNs)則擅長通過對局部表示應用多層聚合來捕獲更高階的信息。在本文中,我們提出了一個用于協同過濾的雙曲線GCN模型,以一種新穎的方式將這些框架結合起來。我們證明了我們的模型可以在邊緣損失的情況下有效學習,并證明了雙曲空間在邊緣設置下具有理想的性質。在測試時,我們的模型使用雙曲距離來進行推理,雙曲距離保留了學習空間的結構。我們對三個公共基準進行了廣泛的實證分析,并與一組大型基線進行比較。我們的方法實現了非常具有競爭力的結果,并超過領先的基線,包括歐幾里德GCN對等物。我們進一步研究了雙曲線嵌入的性質,并表明它們對數據提供了有意義的見解。該工作的完整代碼可以在這里://github.com/layer6ai-labs/HGCF。

付費5元查看完整內容

越來越多的人際互動在社交媒體平臺上數字化,并受到算法決策的影響,而確保這些算法的公平對待變得越來越重要。在這項工作中,我們調查了在社交媒體數據上訓練的協作過濾推薦系統中的性別偏見。我們開發了神經公平協同過濾(NFCF),這是一個在推薦與職業相關的敏感項目(如工作、學術集中程度或課程)時減少性別偏見的實用框架,使用了神經協同過濾的預訓練和微調方法,并輔以偏見糾正技術。我們分別在MovieLens數據集和Facebook數據集上展示了我們的方法在性別去偏見職業和大學專業推薦方面的效用,并取得了比一些最先進的模型更好的表現和更公平的行為。

付費5元查看完整內容

對于推薦系統來說,用戶冷啟動推薦是一個長期存在的挑戰,因為只有很少的冷啟動用戶交互可以被利用。最近的研究試圖從元學習的角度解決這一挑戰,大多數研究遵循參數初始化的方式,即通過幾個步驟的梯度更新來學習模型參數。雖然這些基于梯度的元學習模型在一定程度上取得了良好的性能,但其中的一個根本問題是如何將從以前任務中學習到的全局知識更有效地用于冷啟動用戶的推薦。

本文提出了一種新的元學習推薦方法——任務自適應神經過程(TaNP)。TaNP是神經過程家族中的一個新成員,為每個用戶作出推薦都與相應的隨機過程相關聯。TaNP直接將每個用戶觀察到的交互作用映射到一個預測分布,避開了基于梯度的元學習模型中的一些訓練問題。更重要的是,為了平衡模型容量和適應可靠性之間的平衡,我們引入了一種新的任務適應機制。它使我們的模型能夠學習不同任務的相關性,并自定義全局知識到與任務相關的解碼器參數,以估計用戶的偏好。在不同的實驗設置下,我們在多個基準數據集上驗證了TaNP。實證結果表明,TaNP對幾個最先進的元學習推薦器產生了一致的改進。

//www.zhuanzhi.ai/paper/6e268c251725b797f632dec7d4b6ceef

付費5元查看完整內容

點擊率(CTR)預測在推薦系統和在線廣告中起著至關重要的作用。這些應用程序中使用的數據是多字段類別數據,其中每個特征屬于一個字段。字段信息被證明是重要的,在他們的模型中有一些考慮字段的工作。在本文中,我們提出了一種新的方法來有效和高效地建模場信息。該方法是對FwFM的直接改進,被稱為場矩陣分解機(FmFM,或FM2)。在FmFM框架下,我們對FM和FwFM提出了新的解釋,并與FFM進行了比較。除了對交叉項進行修剪外,我們的模型還支持特定領域的可變維度的嵌入向量,這是一種軟修剪。在保持模型性能的同時,我們還提出了一種有效的最小化維數的方法。FmFM模型還可以通過緩存中間向量來進一步優化,它只需要數千次浮點運算(FLOPs)就可以做出預測。實驗結果表明,該算法的性能優于復雜的FFM算法。FmFM模型的性能也可以與DNN模型相媲美,DNN模型在運行時需要更多FLOPs 。

//www.zhuanzhi.ai/paper/39df3ac3e3acb641f86294a4d6acb39f

付費5元查看完整內容

騰訊健康,騰訊醫典有多個個性化推薦場景,為了提高推薦效果,使用預訓練機制學習更完整的用戶表示。

用戶表示的學習是推薦系統模型中的重要一環。早期的方法根據用戶和項目之間的交互矩陣來學習用戶表達,但這些交互矩陣非常稀疏且矩陣中的值通常是粗粒度的,導致系統很難學習到準確的用戶表達。近期一些工作利用信息更加豐富的評論文本來增強用戶的表示學習,但對于冷門的領域或場景,評論文本的數量也不足以幫助其學習到完整準確的用戶表示。用戶的一些偏好(如評論習慣等)是在不同的領域或場景間共享的,我們可以利用數據豐富的場景下的評論幫助數據不豐富的場景的推薦。同時,受到近期自然語言處理領域中預訓練技術的啟發,本論文提出了一種基于預訓練和微調的兩階段推薦模型。如圖(a)所示,U-BERT包含兩個主要模塊能夠建模評論文本并將其語義信息和用戶的嵌入表達進行融合。在預訓練階段,我們設計了兩種新的預訓練任務能夠充分地利用不同場景下積累的評論文本來學習通用的用戶表達。如圖(b)所示,在微調階段,我們會根據特定場景下的評論數據對預訓練的用戶表示進行微調以適應當前場景下的特點。此外,在進行評分預測時,我們還設計了一個co-matching模塊以捕捉細粒度的語義匹配信息來更好地預測用戶對項目的打分。實驗結果表明,本文提出的推薦模型在多個開放數據集上取得了性能提升。

//34.94.61.102/paper_AAAI-2116.html

付費5元查看完整內容

情感在發現網絡虛假新聞中扮演著重要的角色。在利用情感信號時,現有的方法主要是利用發布者所傳達的新聞內容的情感(即發布者情感)。然而,虛假新聞往往是為了喚起人們的高喚醒或激活人們的情緒,像病毒一樣傳播,因此,新聞評論引起的群眾情緒(即社會情緒)是不可忽視的。此外,還需要探索出版者情緒與社會情緒(即雙重情緒)之間是否存在關系,以及雙重情緒如何在假新聞中出現。在本文中,我們提出了雙重情感特征來挖掘雙重情感及其之間的關系,用于虛假新聞的檢測。我們設計了一個通用的范例,將它插入到任何現有的檢測器作為增強。在三個真實數據集上的實驗結果表明了該特征的有效性。

//www.zhuanzhi.ai/paper/acb14d78d2e77317043f18024f4c748c

付費5元查看完整內容

在信息過載的時代,個性化推薦系統對于輔助用戶決策具有重要意義。同時,對推薦的解釋進一步幫助用戶更好地了解被推薦的項目,從而做出知情的選擇,這就使得可解釋的推薦研究變得非常重要。基于文本句子的解釋由于能夠向用戶傳遞豐富的信息而成為推薦系統的一種重要的解釋形式。然而,現有的句子解釋生成方法要么局限于預定義的句子模板,這限制了句子的表現力,要么選擇自由風格的句子生成,這使得句子質量難以控制。為了同時提高句子表達能力和質量,我們提出了一種神經模板解釋生成框架,它通過從數據中學習句子模板,并生成評論特定特性的模板控制的句子,從而實現了兩方面的優點。在真實數據集上的實驗結果表明,NETE在句子質量和表達能力方面始終優于最新的解釋生成方法。通過對案例研究的進一步分析,也可以看出NETE在產生多樣化和可控解釋方面的優勢。

付費5元查看完整內容

//www.zhuanzhi.ai/paper/f89bf5e9ab6b630c51edddff406566f4

推薦系統在web應用中扮演著過濾大量信息和匹配用戶興趣的基礎角色。雖然許多人致力于開發各種場景下更有效的模型,但對于推薦系統可解釋性的探索卻處于滯后狀態。解釋可以幫助改善用戶體驗和發現系統缺陷。本文在正式引入與模型可解釋性相關的要素后,通過提高表示學習過程的透明度,提出了一種新的可解釋推薦模型。具體地說,為了克服傳統模型中的表示糾纏問題,我們修改了傳統的圖卷積來區分不同層次的信息。此外,每個表示向量被分解為若干段,其中每個段與數據中的一個語義方面相關。與之前的工作不同,在我們的模型中,因子發現和表示學習同時進行,我們能夠處理額外的屬性信息和知識。通過這種方式,該模型可以學習對用戶和項的可解釋和有意義的表示。與傳統方法需要在可解釋性和有效性之間進行權衡不同,我們所提出的可解釋模型在考慮了可解釋性后,其性能沒有受到負面影響。最后,通過綜合實驗驗證了模型的性能和解釋的可信度。

付費5元查看完整內容

圖卷積網絡(GCN)已經成為協同過濾的最新技術。然而,其推薦的有效性的原因還沒有很好地理解。現有的將GCN用于推薦的工作缺乏對GCN的深入消融分析,GCN最初是為圖分類任務而設計的,并配備了許多神經網絡操作。然而,我們實證發現,兩種最常見的設計-特征轉換和非線性激活-對協同過濾的性能貢獻很小。更糟糕的是,包括他們增加了訓練的難度,降低了推薦的效果。在這項工作中,我們的目標是簡化GCN的設計,使其更簡潔,更適合推薦。我們提出了一個新的模型LightGCN,它只包含GCN中最重要的組件——鄰域聚合——用于協同過濾。具體來說,LightGCN通過在用戶-項目交互圖上線性傳播用戶和項目嵌入來學習它們,并使用在所有層上學習到的嵌入的加權和作為最終的嵌入。這種簡單、線性、簡潔的模型更容易實現和訓練,在完全相同的實驗設置下,比神經圖協同過濾(NGCF)——一種最先進的基于GCN的推薦模型——有了顯著的改進(平均大約16.0%的相對改進)。從分析和實證兩方面進一步分析了簡單LightGCN的合理性。我們的實現在TensorFlow和PyTorch中都可用。

付費5元查看完整內容
北京阿比特科技有限公司