隨著互聯網的興起,每天都有不同形式的大量的文本數據產生:新聞、研究文獻、 博客、論壇文字以及社交媒體評論等。很多重要有用的信息隱藏在其中,如何從這些自 由文本中自動抽取所需要的信息是一個關鍵并且重要的一步。信息抽取任務就是為此目 標而誕生。本文主要研究信息抽取子任務之一的實體關系抽取任務。該任務旨在識別文 本中出現的實體,并判斷出實體之間存在的關系。
傳統的有監督實體關系抽取通常采用基于流水線的方法,即實體模型和關系模型 分開訓練。在測試階段,先用實體模型識別出實體,然后關系模型找出這些實體之間的 關系。這種流水線的方法存在著錯誤傳播的缺點,前一個任務的錯誤會累積到后一個任 務。為了緩解這一問題,研究人員提出了聯合模型。聯合模型將兩個子模型統一建模, 可以進一步利用兩個任務之間的潛在信息,以緩解錯誤傳播的缺點。聯合模型的難點是 如何加強實體模型和關系模型之間的交互,比如實體模型和關系模型的輸出之間存在著 一定的約束,在建模的時候考慮到此類約束將有助于聯合模型的性能。
另一方面,為了解決實體關系抽取數據集難以獲得的問題,遠程監督的方法也被提 出來。其主要思想是利用知識庫和大規模文本數據對齊,自動構建大規模的訓練集。然 而,遠程監督方法的缺點是自動構建的訓練集中存在著很多的噪音數據,這些噪音數據 的存在對遠程監督實體關系抽取有著很大的負面影響。此外,在有些應用場景中可能沒 有現成的知識庫可以用來進行遠程監督,如何解決類似的數據噪音和數據缺失問題也是 一大挑戰。
根據實體關系抽取方法的研究現狀,本文從數據和聯合模型兩個角度探索了幾種實 體關系抽取聯合模型,并且探究了所提出模型的優勢和不足。具體來說,本文的主要貢 獻有
基于深度學習的圖像處理算法研究
隨著智能手機和微單相機的普及,拍照已經變成人們日常生活中不可缺少的一部分,圖像也已成為人類社會的重要信息媒介。然而受到拍照環境、設備和技術的影響,圖像中難免會出現退化現象,如何從圖像處理的角度提升拍攝照片的質量具有重要的研究意義與應用價值。近年來,深度學習技術得到了巨大的發展,并廣泛應用于圖像處理領域。相對于許多傳統算法,深度學習技術從海量的訓練數據中學習到的先驗知識具有更強的泛化能力和更復雜的參數化表達,且無需調節算法參數以適應不同的應用場景。得益于上述優勢,深度學習技術已經廣泛應用于圖像處理領域,如何利用深度學習算法提升圖像處理的效果也變成了一個重要的研究方向。
盡管深度學習技術顯著促進了圖像處理領域的發展,但是受限于其對訓練數據的敏感性,在面對無標簽、僅有弱標簽或者合成偽標簽的數據時,深度學習技術的優勢難以充分體現。本學位論文針對以上挑戰,重點研究了缺失完整數據標簽的經典圖像處理問題,包括圖像平滑、反光去除和本征圖像分解等。本文通過將上述問題抽象為對圖像結構敏感的圖像分解問題,將顯著的目標邊緣信息通過優化或者濾波的方式編碼進深度學習的算法設計中。根據圖像處理問題中數據標簽的類型和數量不同,本文依次提出了基于無監督學習、弱監督學習和多標簽聯合訓練的深度學習解決方案。本文的最后提出了解耦學習框架,通過對10種不同圖像處理問題的聯合訓練,提煉出了圖像處理問題的核心解空間。該算法對于理解深度學習技術在圖像處理領域的應用有重要的研究價值和意義。本文的創新點和貢獻包括以下幾個方面:
(1) 一種基于無監督學習的空間自適應圖像平滑算法
該算法通過使用卷積神經網絡,以無監督的方式從無標簽數據中學習圖像平滑的優化過程,并實現可靈活調節的圖像平滑效果。該算法提出了一個由邊緣保持項和空間自適應平滑項構成的能量函數,前者用于保持重要但易破壞的圖像結構,后者用于將多種形式的正則器(Lp范數)施加至圖像的不同區域。由于缺乏平滑圖像的真值數據,本文采用一個無監督學習的能量優化框架,用來實現多種基于圖像平滑的視覺應用,譬如圖像抽象化、鉛筆素描、細節增強、紋理去除和基于內容的圖像處理等。實驗結果表明,該基于無監督學習的空間自適應圖像平滑算法獲得了更好的視覺結果。
(2) 一種基于弱監督學習的圖像反光去除算法
該算法提出了一個多階段卷積神經網絡,用以解決圖像分解領域中經典的反光去除問題。本算法框架由兩個結構相似的卷積神經網絡串聯而成,前者預測目標圖像的邊緣結構,后者依據預測邊緣信息的引導重建目標圖像;整個過程既不需要任何人工設計,也不依賴于其他圖像處理應用。通過從真實反光圖像觀察得到的圖像亮度和結構先驗,該算法設計了一種針對模糊強反光的反光圖像合成算法;通過將合成數據以弱監督信號的形式融入到多階段神經網絡訓練中,該算法獲得了在真實反光圖像上的良好泛化性能。實驗結果表明,該基于弱監督學習的圖像反光去除算法在不同程度的反光場景中均獲得更優的視覺效果。
(3) 一種基于多標簽聯合訓練的本征圖像分解算法
本征圖像分解往往存在數據集冗雜、數據標簽不一致等問題。為解決該問題,本文提出了一個通用的核心神經網絡,用以在不同類型的數據標簽中共享本征圖像形成過程的稀疏先驗。該神經網絡由三個不同的基礎模塊組成:直接本征圖像估計網絡、導向網絡和域濾波器;其中,直接本征圖像估計網絡通過對本征圖像的直接監督獲得初始的預測結果,導向網絡負責生成稀疏的反射結構先驗,并引導域濾波器獲得干凈的反射估計。該算法設計了一個靈活的能量損失層以實現多標簽數據聯合訓練的目的。實驗結果表明,該本征圖像分解算法在所有的主流基準數據集上都獲得了更高的精確度。
(4) 一種基于解耦學習的實時參數化圖像處理框架
傳統的深度學習算法在面對不同的圖像處理應用時,需要重復地訓練神經網絡。為了解決這個問題,該算法提出了由基礎網絡和權重學習網絡組成的解耦學習框架,其中前者用來實現具體的圖像處理應用,后者用來學習基礎網絡的權重。該算法通過對基礎網絡的結構和權重進行解耦,達到根據圖像處理應用的變化實時動態調整基礎網絡權重的效果,并因此實現了利用單一神經網絡融合多種圖像處理應用的目的。實驗結果表明,該解耦學習框架成功應用在10種不同的參數化圖像算子中,并減少了網絡參數的存儲空間。
題目: 基于深度學習的主題模型研究
摘要: 主題模型作為一個發展二十余年的研究問題,一直是篇章級別文本語義理解的重要工具.主題模型善于從一組文檔中抽取出若干組關鍵詞來表達該文檔集的核心思想,因而也為文本分類、信息檢索、自動摘要、文本生成、情感分析等其他文本分析任務提供重要支撐.雖然基于三層貝葉斯網絡的傳統概率主題模型在過去十余年已被充分研究,但隨著深度學習技術在自然語言處理領域的廣泛應用,結合深度學習思想與方法的主題模型煥發出新的生機.研究如何整合深度學習的先進技術,構建更加準確高效的文本生成模型成為基于深度學習主題建模的主要任務.本文首先概述并對比了傳統主題模型中四個經典的概率主題模型與兩個稀疏約束的主題模型.接著對近幾年基于深度學習的主題模型研究進展進行綜述,分析其與傳統模型的聯系、區別與優勢,并對其中的主要研究方向和進展進行歸納、分析與比較.此外,本文還介紹了主題模型常用公開數據集及評測指標.最后,總結了主題模型現有技術的特點,并分析與展望了基于深度學習的主題模型的未來發展趨勢。