亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

從圖結構數據中學習節點集的結構表示對于從節點角色發現到鏈接預測和分子分類的各種應用至關重要。圖神經網絡(GNNs)在結構表示學習方面取得了巨大的成功。然而:

大多數 GNN 受到 1-Weisfeiler-Lehman(WL)test 的限制,因此有可能為實際上不同的結構和圖形生成相同的表示。 最近通過模仿高階 WL tests 提出的更強大的 GNN 只關注全圖表示,不能利用圖結構的稀疏性來提高計算效率。 這篇文章提出了一類與結構相關的特征,稱為距離編碼(Distance Encoding,DE),以幫助 GNN 以比 1-WL test 更嚴格的表達能力來表示任意大小的節點集。DE 本質上捕獲了要學習表示的節點集與圖中每個節點之間的距離,其中包括與圖相關的重要度量,如最短路徑距離和廣義 PageRank 得分。

此外,此文還提出了兩個通用的 GNNs 框架來使用 DEs:

作為額外的節點屬性 進一步作為 GNNs 中消息聚合的控制器 這兩個框架仍然可以利用稀疏結構來保持處理大型圖的可擴展性。

理論上,作者證明了這兩個框架可以區分傳統 GNN 經常失效的幾乎所有規則圖中嵌入的節點集。還嚴格分析了它們的局限性。 實驗上,作者在6個真實網絡上分別從節點結構角色預測、鏈路預測和三角形預測三個方面對這兩個框架進行了實證評估。 結果表明,DE-assisted GNNs 的平均準確率比沒有 DEs 的 GNNs 提高了15%,DE-assisted GNNs 的性能也明顯優于專門為這些相應任務設計的其他最先進的基線。

付費5元查看完整內容

相關內容

圖表示學習

近年來,圖神經網絡(GNNs)在結構化數據建模方面取得了巨大的成功。然而,大多數GNN是為同構網絡設計的,即所有節點或邊具有相同的特征空間和表示分布。這使得它們無法代表真實世界中不斷演化的異構圖,如知識圖譜、物聯網圖、領英經濟圖、開放學術圖和Facebook實體圖。在這次演講中,我將介紹圖神經網絡架構,它可以建模十億年規模的異構圖形與動態。重點將是我們如何設計圖注意力和相對時間編碼機制,以捕獲真實圖異構和動態性質。接下來,我將進一步討論為一般的圖挖掘任務預先訓練這類GNN的策略。最后,為了處理web規模的數據,我將介紹一種異構的小型批處理圖采樣算法,該算法帶有一個歸納的時間戳分配方法,用于高效和可擴展的訓練。大量的實驗顯示了在實踐中對網絡規模圖進行預訓練的GNNs的前景。

//ericdongyx.github.io/papers/slides-Graph-Rep-Learning-GNN-PreTraining-at-CCF-BAAI-2020.pdf

付費5元查看完整內容

簡介

本文研究如何利用圖生成作為自監督任務來預訓練GNN。我們將圖的生成概率分解成兩個模塊:1)節點特征生成;2)圖結構生成。通過對這兩個模塊建模,GPT-GNN可以捕捉圖任務里特征與結構之間的關聯,從而不需要很多的標注數據就可達到很高的泛化性能。

背景:預訓練

機器學習的成功很大程度上取決于數據。但是,高質量的標記數據通常很昂貴且難以獲得,尤其是對于希望訓練參數較多的模型。而相對應的,我們卻可以很容易地獲取大量的無標記數據,其數量可以是標記數據的數千倍。 例如,在社交網絡上進行異常檢測時,惡意帳戶的標注需要依賴于專家知識,數量較小,而整個網絡的規模卻可以達到十億規模。

為了解決標注數據較少,盡可能利用其無標注數據,一個常規的做法是自監督的預訓練(self-supervisedpre-training)。其目標是設計合理的自監督任務,從而使模型能從無標注數據里學得數據的信息,作為初始化遷移到下游任務中。由于目標任務中很多的知識已經在預訓練中學到,因此通過預訓練,我們只需要非常少量的標注數據,就能得到較好的泛化性能。

在NLP領域,BERT及其變種的取得了巨大的成功,證明了語言模型作為一個自監督任務,可以幫助訓練非常深的Transformer模型,以捕捉語言的底層知識,如語法、句法、詞義等。同樣,在CV領域,最近的工作如SimCLR也顯示出通過對比學習(Contrastive Learning) 對ResNet進行預訓練也可以顯著提升泛化性能。這些成功表明,無標注數據本身包含豐富的語義知識,因此如果通過預訓練可以使模型能捕捉無標注數據的分布,就能作為初始化幫助一系列下游任務。

受到這些工作的啟發,我們思考能否將預訓練的想法運用到圖數據分析中。本工作就致力于預訓練圖神經網絡,以期GNN能夠學習到圖數據的結構和特征信息,從而能幫助標注數據較少的下游任務。

GPT-GNN模型

要在圖數據上做預訓練,第一個問題是:如何設計合適的無監督學習任務?

本工作提出用生成模型來對圖分布進行建模,即逐步預測出一個圖中一個新節點會有哪些特征、會和圖中哪些節點相連。

由于我們想同時捕獲屬性和結構信息,因此需要將每個節點的條件生成概率分解為兩項,特征生成與圖結構生成。對每一個節點,我們會先掩蓋其特征及部分邊,僅提供剩下的部分作為已經觀測到的邊。

在第一步中,我們將通過已經觀測到的邊,預測該節點的特征,

在第二步中,我們將通過已經觀測到的邊,以及預測出的特征,來預測剩下的邊。

我們可以寫出對應的分解表達式。從理論上,這個目標的期望等同于整個圖的生成概率。

為了并行高效地計算每個節點的loss,避免信息泄露(如節點特征預測的時候如何避免看到該節點自己的輸入特征),以及處理大圖和增加負樣本采樣的準確性,我們做了很多的模型設計。詳見文章。

實驗

我們在兩個大規模異構網絡和一個同構網絡上進行了實驗。

第一個異構圖是MicrosoftAcademic Graph(OAG),其中包含超過2億個節點和23億條邊。另一個是AmazonRecommendation數據集。

總體而言,我們提出的GPT-GNN在不同的實驗設定下顯著提高下游任務的性能,平均能達到9.1%的性能提升。

我們還評估了在不同百分比的標記數據下,GPT-GNN是否依然能取得提升。我們可以看到,使用GPT預訓練時,僅使用20%標簽數據的模型性能就會比使用100%數據進行直接監督學習的模型性能更高。這顯示了預訓練的有效性,尤其是在標簽稀缺時。

付費5元查看完整內容

圖神經網絡(GNN)已經在許多具有挑戰性的應用中展示了優越的性能,包括小樣本學習任務。盡管GNN具有強大的從少量樣本中學習和歸納的能力,但隨著模型的深入,GNN通常會出現嚴重的過擬合和過平滑問題,這限制了模型的可擴展性。在這項工作中,我們提出了一個新的注意力GNN來解決這些挑戰,通過合并三重注意機制,即節點自我注意,鄰居注意和層記憶注意力。我們通過理論分析和實例說明了所提出的注意模塊可以改善小樣本學習的GNN的原因。廣泛的實驗表明,在mini-ImageNet 和Tiered-ImageNet數據集上,通過誘導和直推設置,提出的注意力GNN在小樣本學習方面優于基于最先進的GNN方法。

付費5元查看完整內容

圖表示學習已經成為解決現實問題的一種強大的技術。節點分類、相似度搜索、圖分類和鏈接預測等各種下游圖學習任務都受益于它的最新發展。然而,現有的圖表示學習技術側重于特定領域的問題,并為每個圖訓練專用的模型,這些模型通常不能轉移到域外數據。受最近自然語言處理和計算機視覺的預訓練進展的啟發,我們設計了圖對比編碼(GCC)——一種無監督圖表示學習框架——來捕獲跨多個網絡的通用網絡拓撲屬性。我們將GCC的預訓練任務設計為網絡中或跨網絡的子圖級實例識別,并利用對比學習來授權模型學習內在的和可轉移的結構表示。我們對三個圖學習任務和十個圖數據集進行了廣泛的實驗。結果表明,在一組不同的數據集上進行預訓練的GCC可以取得與任務相關的從零開始訓練的GCC具有競爭力或更好的性能。這表明,預訓練和微調范式為圖表示學習提供了巨大的潛力。

//arxiv.org/abs/2006.09963

付費5元查看完整內容

標簽傳播(LPA)和圖卷積神經網絡(GCN)都是圖上的消息傳遞算法。兩者都解決了節點分類的任務,但是LPA將節點標簽信息傳播到圖的邊緣,而GCN傳播并轉換節點特征信息。然而,雖然概念相似,LPA和GCN之間的理論關系還沒有得到研究。這里我們從兩個方面研究了LPA和GCN之間的關系:(1)特征/標簽平滑,分析一個節點的特征/標簽如何擴散到它的鄰居;(2)一個節點的初始特征/標簽對另一個節點的最終特征/標簽的影響程度。在理論分析的基礎上,提出了一種統一GCN和LPA的節點分類端到端模型。在我們的統一模型中,邊緣權值是可學習的,LPA作為正則化幫助GCN學習合適的邊緣權值,從而提高分類性能。我們的模型也可以看作是基于節點標簽的注意力學習權重,它比現有的基于特征的注意力模型更面向任務。在真實圖數據的大量實驗中,我們的模型在節點分類準確度方面顯示出優于目前最先進的基于gcn的方法。

付費5元查看完整內容

題目: Structural Deep Clustering Network

摘要: 聚類是數據分析的基本任務。近年來,深度聚類技術(deep clustering)得到了廣泛的關注,它的靈感主要來自于深度學習方法。當前的深度聚類方法通常借助深度學習強大的表示能力(如自編碼)來提高聚類結果,這表明學習一種有效的聚類表示是一個關鍵的要求。深度聚類方法的優勢在于從數據本身中提取有用的表示,而不是從數據的結構中提取,這在表示學習中受到的關注較少。基于圖卷積網絡(GCN)在對圖結構進行編碼方面取得的巨大成功,我們提出了一種結構化深度聚類網絡(SDCN),將結構信息集成到深度聚類中。具體來說,我們設計了一個傳遞算子,將自編碼器學習到的表示轉換到相應的GCN層,并設計了雙重自監督機制來統一這兩種不同的深層神經結構,指導整個模型的更新。通過這種方式,從低階到高階的多種數據結構自然地與自動編碼器學習的多種表示相結合。在此基礎上,從理論上分析了傳遞算子。通過使用傳遞操作符,GCN改進了作為高階圖正則化約束的特定于自編碼的表示形式,并且自動編碼器有助于緩解GCN中的過度平滑問題。通過綜合實驗,我們證明我們提出的模型可以持續地比最先進的技術表現得更好。

付費5元查看完整內容

論文題目: MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding

摘要: 大量真實世界的圖或網絡本質上是異構的,涉及節點類型和關系類型的多樣性。異構圖嵌入是將異構圖的豐富結構和語義信息嵌入到低維節點表示中。現有的模型通常在異構圖中定義多個元數據來捕獲復合關系并指導鄰居選擇。但是,這些模型要么忽略節點內容特性,要么沿著元路徑丟棄中間節點,要么只考慮一個元路徑。為了解決這三個局限性,我們提出了一種新的集合圖神經網絡模型來提高最終性能。具體來說,MAGNN使用了三個主要組件,即,節點內容轉換封裝輸入節點屬性,元內聚合合并中間語義節點,元間聚合合并來自多個元的消息。在三個真實世界的異構圖數據集上進行了大量的節點分類、節點聚類和鏈路預測實驗,結果表明MAGNN的預測結果比最先進的基線更準確。

付費5元查看完整內容

論文題目: A Structural Graph Representation Learning Framework

論文摘要: 許多基于圖的機器學習任務的成功在很大程度上取決于從圖數據中學習到的適當表示。大多數工作都集中在于學習保留鄰近性的節點嵌入,而不是保留節點之間結構相似性的基于結構的嵌入。這些方法無法捕獲對基于結構的應用程序(如web日志中的visitor stitching)至關重要的高階結構依賴和連接模式。在這項工作中,我們闡述了高階網絡表示學習,并提出了一個稱為HONE的通用框架,用于通過節點鄰域中的子圖模式(network motifs, graphlet orbits/positions)從網絡中學習這種結構性節點嵌入。HONE引入了一種通用的diffusion機制和一種節省空間的方法,該方法避免了使用k-step線性算子來顯式構造k-step motif-based矩陣。此外,HONE被證明是快速和有效的,最壞情況下的時間復雜度幾乎是線性的。實驗結果表明,該算法能有效地處理大量的網絡日志數據,包括鏈接預測和visitor stitching。

作者簡介:

Ryan A. Rossi,目前在Adobe Research工作,研究領域是機器學習;涉及社會和物理現象中的大型復雜關系(網絡/圖形)數據的理論、算法和應用。在普渡大學獲得了計算機科學博士和碩士學位。

Nesreen K. Ahmed,英特爾實驗室的高級研究員。我在普渡大學計算機科學系獲得博士學位,在普渡大學獲得統計學和計算機科學碩士學位。研究方向是機器學習和數據挖掘,涵蓋了大規模圖挖掘、統計機器學習的理論和算法,以及它們在社會和信息網絡中的應用。

付費5元查看完整內容
北京阿比特科技有限公司