亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖神經網絡(GNNs)被廣泛用于學習一種強大的圖結構數據表示。最近的研究表明,將知識從自監督任務遷移到下游任務可以進一步改善圖的表示。然而,自監督任務與下游任務在優化目標和訓練數據上存在內在的差距。傳統的預訓練方法可能對知識遷移不夠有效,因為它們不能適應下游任務。為了解決這一問題,我們提出了一種新的遷移學習范式,該范式可以有效地將自監督任務作為輔助任務來幫助目標任務。在微調階段,我們的方法將不同的輔助任務與目標任務進行自適應的選擇和組合。我們設計了一個自適應輔助損失加權模型,通過量化輔助任務與目標任務之間的一致性來學習輔助任務的權重。此外,我們通過元學習來學習權重模型。我們的方法可以運用于各種遷移學習方法,它不僅在多任務學習中有很好的表現,而且在預訓練和微調中也有很好的表現。在多個下游任務上的綜合實驗表明,所提出的方法能夠有效地將輔助任務與目標任務相結合,與現有的方法相比,顯著提高了性能。

//www.zhuanzhi.ai/paper/852db932624d6feeb7bbd32e67772b27

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

關系分類(RC)是文本知識提取中的重要任務,而數據驅動方法雖然具有較高的性能,但卻嚴重依賴于大量標注的訓練數據。近年來,人們提出了許多少樣本RC模型,并在一般領域數據集上取得了良好的結果,但當適應于特定領域(如醫學)時,其性能急劇下降。本文提出了一種面向領域自適應任務(KEFDA)的知識增強少樣本RC模型,該模型將通用知識圖譜和領域特定知識圖譜融合到RC模型中,以提高其領域自適應能力。該模型利用概念級的KGs,可以更好地理解文本的語義,并易于從少數實例中總結關系類型的全局語義。更重要的是,作為一種元信息,利用KGs的方式可以從現有任務轉移到新的任務,甚至跨領域。具體來說,我們設計了一個知識增強的原型網絡進行實例匹配,設計了一個關系元學習網絡進行隱式關系匹配。這兩個評分函數被組合在一起來推斷新實例的關系類型。FewRel 2.0基準的領域適應挑戰的實驗結果表明,我們的方法顯著優于最先進的模型(平均6.63%)。

//dl.acm.org/doi/abs/10.1145/3447548.3467438

付費5元查看完整內容

神經序列標記被廣泛應用于許多自然語言處理(NLP)任務,如命名實體識別(NER)和用于對話系統和語義分析的槽標記。最近,大規模的預訓練語言模型在這些任務中顯示出了顯著的成功,只要對大量特定任務的標記數據進行微調。然而,獲取這樣大規模的標記訓練數據不僅代價昂貴,而且由于數據訪問和隱私限制,在許多敏感用戶應用中可能不可行。如果序列標記任務需要在標記級進行這樣的注釋,這種情況就會加劇。在這項工作中,我們提出以解決標簽短缺的神經序列標記模型。具體來說,我們提出了一個元自訓練框架,它利用很少的手工標注標簽來訓練神經序列模型。自訓練是一種通過迭代知識交換從大量無標記數據中學習的有效機制,而元學習有助于自適應樣本重加權,以減少噪聲偽標記帶來的誤差傳播。在6個基準數據集上的大量實驗表明了該方法的有效性,其中包括2個用于大規模多語言NER的基準數據集和4個用于面向任務的對話系統的槽標記數據集。在每個任務中,每個類別只有10個標注的例子,該方法比目前最先進的方法提高了10%,證明了其在有限的訓練標簽體系中的有效性。

//www.microsoft.com/en-us/research/uploads/prod/2020/10/MetaST_Few_shot_KDD_2021.pdf

付費5元查看完整內容

在圖數據挖掘任務中,對于特定任務,有標簽的數據通常十分稀少,然而現實中存在著大量無標簽的數據。

因此,如何通過預訓練從這些標簽數據中獲取有用的先驗知識,從而提升下游任務的表現成為了一個有價值的問題。我們本篇工作提出了一種在大規模異質圖上進行高效預訓練的框架。

近年來,圖神經網絡作為圖結構數據學習的重要方法,可以通過遞歸的從鄰居聚合消息(特征和節點表示)來學習到有效的圖表示。但是圖神經網絡通常需要大量的有標簽數據來取得令人滿意的表現。為了解決標簽稀疏的問題,一些工作提出了基于自監督的方法來從無標簽的數據中提取先驗知識。然而,現有的預訓練框架都是基于同質圖的,但現實生活中的交互系統通常都是有多種類型節點和邊的大規模的異質圖。因此,在我們設計預訓練模型的時候遇到了如下兩個挑戰。

如何捕捉異質圖的語義和結構性質 相比同質圖,異質圖具有更豐富的語義和結構信息。不同類型的節點通常有不同的圖結構性質(例如會議節點的度要普遍高于其他類型的節點)。不同類型的連邊通常有不同的語義關系。因此為了有效的預訓練,我們需要捕捉這些信息。

如何在大規模異質圖上高效預訓練一個 GNN

現實生活中的異質圖可以擁有數十億的節點和邊。為了可以在這樣這樣大規模的圖上進行預訓練,我們需要設計一種加速策略來保證我們在大規模異質圖上的預訓練效率。

為了解決上述的兩個問題,我們提出了 PTHGNN 來進行大規模異質圖上的預訓練。對于第一個挑戰,基于對比學習,我們提出了節點級別和網絡模式級別的預訓練任務來捕捉異質圖的語義和結構信息。對于第二個挑戰,我們提出了基于 personalized pagerank 的邊稀疏化方法,從而來提高我們進行大規模預訓練的效率。

付費5元查看完整內容

圖神經網絡(GNN)在實際應用中往往會受到可用樣本數量太少的限制,而元學習(meta-learning)作為解決機器學習中樣本缺乏問題的重要框架,正逐漸被應用到 GNN 領域以解決該問題。本文梳理近年來在元學習應用于 GNN 的一系列研究進展,我們根據模型的架構、共享的表示和應用的領域對以往工作進行分類,并在最后討論該領域當前有待解決的問題和未來值得關注的研究方向。

圖結構數據(Graph)廣泛存在于現實場景中,例如藥物研究中的藥物分子結構和推薦系統中的用戶商品交互都可以用圖(Graph)表示,而圖數據(Graph)的廣泛存在也促進了圖神經網絡(GNN)的發展。GNN 是專門用于處理圖數據的深度神經網絡,它將圖或圖上的頂點、邊映射到一個低維空間,從而學習得到圖的有效表示,并進一步將其應用于下游任務。近年來,GNN 被廣泛應用于新藥發現、交通預測、推薦系統等各個領域。

盡管 GNN 擁有非常強大的能力,但在實際應用中依然面臨樣本數量有限的挑戰,特別是在推薦系統等真實系統更是要求 GNN 可以在少量樣本可用的情況下適應新問題。而元學習(meta-learning)作為解決深度學習系統中樣本缺乏問題的重要框架,在自然語言處理、機器人技術等多種應用中都取得了成功。因此,如何利用元學習解決 GNN 所面臨的樣本缺乏問題,是研究人員普遍關心的問題。

元學習的主要思想是利用之前的學習經驗來快速適應一個新問題,從而利用很少的樣本就能學習一個有用的算法。具體來講,元學習旨在以先驗的形式學習一個模型,而不是針對所有任務學習一個模型(不能區分任務)或針對每個任務學習單獨的模型(可能對每個任務過擬合)。元學習應用于 Graph 的主要挑戰是如何確定跨任務共享的表示類型,以及怎樣設計有效的訓練策略。近期,研究人員針對不同的應用場景,已經提出了多種元學習方法來訓練 GNN。本文我們就將對元學習在 GNN 上的運用進行全面回顧。

付費5元查看完整內容

對于推薦系統來說,用戶冷啟動推薦是一個長期存在的挑戰,因為只有很少的冷啟動用戶交互可以被利用。最近的研究試圖從元學習的角度解決這一挑戰,大多數研究遵循參數初始化的方式,即通過幾個步驟的梯度更新來學習模型參數。雖然這些基于梯度的元學習模型在一定程度上取得了良好的性能,但其中的一個根本問題是如何將從以前任務中學習到的全局知識更有效地用于冷啟動用戶的推薦。

本文提出了一種新的元學習推薦方法——任務自適應神經過程(TaNP)。TaNP是神經過程家族中的一個新成員,為每個用戶作出推薦都與相應的隨機過程相關聯。TaNP直接將每個用戶觀察到的交互作用映射到一個預測分布,避開了基于梯度的元學習模型中的一些訓練問題。更重要的是,為了平衡模型容量和適應可靠性之間的平衡,我們引入了一種新的任務適應機制。它使我們的模型能夠學習不同任務的相關性,并自定義全局知識到與任務相關的解碼器參數,以估計用戶的偏好。在不同的實驗設置下,我們在多個基準數據集上驗證了TaNP。實證結果表明,TaNP對幾個最先進的元學習推薦器產生了一致的改進。

//www.zhuanzhi.ai/paper/6e268c251725b797f632dec7d4b6ceef

付費5元查看完整內容

Adaptive Consistency Regularization for Semi-Supervised Transfer Learning Abulikemu Abuduweili1,2*, Xingjian Li1,3? , Humphrey Shi2? , Cheng-Zhong Xu3 , Dejing Dou1?

雖然最近關于半監督學習的研究在利用標記和未標記數據方面取得了顯著進展,但大多數研究都假定模型的基本設置是隨機初始化的。在這項工作中,我們將半監督學習和遷移學習結合起來,從而形成一個更實用和更具競爭力的范式,該范式可以利用來自源領域的強大的預訓練模型以及目標領域的標記/未標記數據。更好地利用pre-trained權重和標記的價值目標的例子,我們引入自適應一致性互補正規化,由兩部分組成:自適應知識一致性(AKC)在源和目標之間的示例模型和自適應表示一致性(AKC)標記和未標記示例之間的目標模型。一致性正則化所涉及的實例是根據它們對目標任務的潛在貢獻自適應選擇的。通過微調ImageNet預先訓練的ResNet-50模型,我們對流行基準進行了廣泛的實驗,包括CIFAR-10、CUB-200、Indoor67和MURA。結果表明,我們提出的自適應一致性正則化優于最先進的半監督學習技術,如偽標簽、Mean Teacher和MixMatch。此外,我們的算法與現有的方法是正交的,因此能夠在MixMatch和FixMatch之上獲得額外的改進。我們的代碼可以在//github.com/SHI-Labs/SemiSupervised-Transfer-Learning上找到。

付費5元查看完整內容

基于深度學習的半監督學習(SSL)算法在醫學圖像分割方面取得了很有前途的結果,并可以通過利用未標記的數據減輕醫生昂貴的標注。然而,現有文獻中的大多數SSL算法都傾向于通過干擾網絡和/或數據來規約模型訓練。考慮到多/雙任務學習涉及到具有固有的預測擾動的各個級別的信息,我們在這項工作中提出了一個問題:我們能夠顯式地構建任務級別的正則化,而不是隱式地構建用于SSL的網絡和/或數據級別的擾動和轉換嗎?為了回答這個問題,我們首次提出了一個新的雙任務一致性半監督框架。具體地說,我們使用一個雙任務深度網絡來聯合預測一個像素級分割圖和一個幾何感知的目標集表示。通過可微任務轉換層將水平集表示轉換為近似分割映射。同時,我們在水平集導出的分割圖和直接預測的分割圖之間引入了一種雙任務一致性正則化,用于標記和未標記數據。在兩個公共數據集上的大量實驗表明,我們的方法可以通過合并未標記數據極大地提高性能。同時,我們的框架優于最先進的半監督醫學圖像分割方法。代碼可以在//github.com/Luoxd1996/DTC找到。

付費5元查看完整內容

圖神經網絡(GNN)已經成為圖表示學習的事實標準,它通過遞歸地聚集圖鄰域的信息來獲得有效的節點表示。盡管 GNN 可以從頭開始訓練,但近來一些研究表明:對 GNN 進行預訓練以學習可用于下游任務的可遷移知識能夠提升 SOTA 性能。但是,傳統的 GNN 預訓練方法遵循以下兩個步驟:

在大量未標注數據上進行預訓練; 在下游標注數據上進行模型微調。 由于這兩個步驟的優化目標不同,因此二者存在很大的差距。

在本文中,我們分析了預訓練和微調之間的差異,并為了緩解這種分歧,我們提出了一種用于GNNs的自監督預訓練策略L2P-GNN。方法的關鍵是L2P-GNN試圖以可轉移的先驗知識的形式學習如何在預訓練過程中進行微調。為了將局部信息和全局信息都編碼到先驗信息中,我們在節點級和圖級設計了一種雙重自適應機制。最后,我們對不同GNN模型的預訓練進行了系統的實證研究,使用了一個蛋白質數據集和一個文獻引用數據集進行了預訓練。實驗結果表明,L2P-GNN能夠學習有效且可轉移的先驗知識,為后續任務提供好的表示信息。我們在//github.com/rootlu/L2P-GNN公開了模型代碼,同時開源了一個大規模圖數據集,可用于GNN預訓練或圖分類等。

總體來說,本文的貢獻如下:

  • 首次探索學習預訓練 GNNs,緩解了預訓練與微調目標之間的差異,并為預訓練 GNN 提供了新的研究思路。
  • 針對節點與圖級表示,該研究提出完全自監督的 GNN 預訓練策略。
  • 針對預訓練 GNN,該研究建立了一個新型大規模書目圖數據,并且在兩個不同領域的數據集上進行了大量實驗。實驗表明,該研究提出的方法顯著優于 SOTA 方法。

付費5元查看完整內容

圖神經網絡(GNNs)在各種網絡相關任務已被證明是非常有效的。大多數現有的GNN通常利用節點特征的低頻信號,這就產生了一個基本的問題: 低頻信息是我們在現實應用中所需要的全部嗎?在本文中,我們首先提出了一個實驗研究來評估低頻和高頻信號的作用,結果清楚地表明,探索低頻信號與在不同場景下學習有效的節點表示是遙遠的。在GNN中,我們如何自適應地學習低頻信息以外的更多信息?一個可行的方案可以幫助GNNs增強適應性。針對這一問題,我們提出了一種具有自適應機制的頻率自適應圖卷積網絡(FAGCN),該網絡能夠在消息傳遞過程中自適應地整合不同的信號。為了加深理解,我們從理論上分析了低頻信號和高頻信號在學習節點表示上的作用,進一步解釋了為什么FAGCN能在不同類型的網絡上表現良好。在六個真實網絡上的廣泛實驗證實,FAGCN不僅緩解了過度平滑的問題,而且比最先進的技術有優勢。

//www.zhuanzhi.ai/paper/7cfc3401bf12182d85c24e8231e760ec

付費5元查看完整內容

圖神經網絡(gnn)的優勢在于對結構化數據的拓撲信息進行顯式建模。然而,現有的gnn在獲取層次圖表示方面的能力有限,而層次圖表示在圖形分類中起著重要的作用。本文創新性地提出了層次圖膠囊網絡(HGCN),該網絡可以聯合學習節點嵌入和提取圖的層次結構。具體地說,解糾纏圖膠囊是通過識別每個節點下的異構因素建立的,這樣它們的實例化參數代表同一實體的不同屬性。為了學習層次表示,HGCN通過顯式地考慮部件之間的結構信息,刻畫了低層膠囊(部分)和高層膠囊(整體)之間的部分-整體關系。實驗研究證明了HGCN算法的有效性和各組成部分的貢獻。

//www.zhuanzhi.ai/paper/c9930a15b45547cafbee90db8c5612aa

付費5元查看完整內容
北京阿比特科技有限公司