亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

O'Brien對信息系統的介紹繼續反映了企業范圍的業務應用程序的發展。來自堪薩斯大學的George Marakas作為合著者加入了這個新版本。新的現實世界案例研究與這種課程轉變相適應。本文的重點是教一般業務經理如何使用和管理用于企業協作的最新IT技術,如Internet、內部網和外聯網,以及它如何有助于競爭優勢、重新設計業務流程、解決問題和決策。

付費5元查看完整內容

相關內容

這本書沒有假設讀者在統計方面有任何預先訓練,這本書的第一部分描述了基本的統計原理,從一個觀點,使他們的缺點直觀和容易理解。重點是用語言和圖形來描述概念。第二部分描述了解決第一部分所涵蓋問題的現代方法。使用來自實際研究的數據,包括許多例子來說明傳統程序的實際問題,以及更多的現代方法如何能對統計研究的許多領域中得出的結論產生實質性的影響。

這本書的第二版包括了自從第一版出現以來發生的一些進展和見解。包括與中位數相關的新結果,回歸,關聯的測量,比較依賴組的策略,處理異方差的方法,以及效應量的測量。

付費5元查看完整內容

這個網絡研討會介紹了數據科學的基礎知識,并簡要回顧了一些統計的基本概念。它還概述了如何擁有一個成功的數據科學項目。

付費5元查看完整內容

What is Linux Linux file system Basic commands File permissions Variables Use HPC clusters Processes and jobs File editing

付費5元查看完整內容

對于語音計算領域的開發者來說,這是一個激動人心的時刻:谷歌上每4次搜索中就有1次是支持語音的,亞馬遜Alexa剛剛超過1萬個技能,WhatsApp上每天完成1億個通話。但是你從哪里開始學習如何在這個領域編碼呢?

無論您是一位經驗豐富的開發人員還是剛剛起步,這本書都將指導您使用Python構建基于語音的應用程序。

  • 了解如何讀/寫、記錄、清潔、加密、回放、轉碼、轉錄、壓縮、發布、飽和化、建模和可視化語音文件
  • 從零開始創建自己的語音計算機和語音助手
  • 在Docker和Kubernetes上設計前沿的微服務服務器架構
  • 在GitHub存儲庫中訪問200多個初始腳本
  • 參與到更大的開源語音社區中
付費5元查看完整內容

這本受歡迎的教科書的第一版,當代人工智能,提供了一個學生友好的人工智能介紹。這一版完全修訂和擴大更新,人工智能: 介紹機器學習,第二版,保留相同的可訪問性和解決問題的方法,同時提供新的材料和方法。

該書分為五個部分,重點介紹了人工智能中最有用的技術。書的第一部分涵蓋了基于邏輯的方法,而第二部分著重于基于概率的方法。第三部分是涌現智能的特點,探討了基于群體智能的進化計算和方法。接下來的最新部分將提供神經網絡和深度學習的詳細概述。書的最后一部分著重于自然語言的理解。

適合本科生和剛畢業的研究生,本課程測試教材為學生和其他讀者提供關鍵的人工智能方法和算法,以解決具有挑戰性的問題,涉及系統的智能行為在專門領域,如醫療和軟件診斷,金融決策,語音和文本識別,遺傳分析等。

//www.routledge.com/Artificial-Intelligence-With-an-Introduction-to-Machine-Learning-Second/Neapolitan-Jiang/p/book/9781138502383

付費5元查看完整內容

Perkovic對使用Python編程的介紹:作為應用程序開發的重點,第二版不僅僅是對編程的介紹。這是一本包羅萬象的計算機科學入門書,采用了“在正確的時間使用正確的工具”的教學方法,并側重于應用程序開發。該方法是實踐和問題導向的,與實踐問題和解決方案出現在整個文本。文本是命令式的,但并不回避在適當的時候盡早討論對象。關于用戶定義類和面向對象編程的討論將在后面的課文中出現,當學生有更多的背景知識和概念時,可以激發他們的學習動機。章節包括問題解決技術和經典算法的介紹,問題解決和編程以及將核心技能應用于應用程序開發的方法。本版本還包括在更廣泛的領域中提供的示例和實踐問題。另一章的案例研究是獨家威利E-Text,為學生提供實際應用的概念和工具,涵蓋在章節中。

付費5元查看完整內容

這本全面的教科書向讀者介紹了博弈論的主要思想和應用,以一種結合了嚴謹性和可達性的風格。Steven Tadelis從對理性決策的簡明描述開始,接著討論了具有完全信息的策略性和廣泛的形式博弈、貝葉斯博弈和具有不完全信息的廣泛的形式博弈。他涵蓋了一系列的主題,包括多階段重復博弈、討價還價理論、拍賣、尋租博弈、機制設計、信號博弈、信譽構建和信息傳遞博弈。與其他博弈論書籍不同,這本書從理性的概念開始,通過諸如主導策略和理性化等概念,探討其對多人決策問題的影響。只有這樣,它才提出了納什均衡及其導數的問題。

《博弈論》是高等本科和研究生的理想教材。在整個過程中,概念和方法是解釋使用真實世界的例子支持精確的分析材料。這本書有許多重要的應用經濟學和政治學,以及大量的練習,集中在如何正式的非正式情況,然后分析他們。

介紹博弈論的核心思想和應用 包含靜態和動態博弈,包含完整和不完整的信息 提供各種各樣的例子、應用程序和練習 主題包括重復博弈、討價還價、拍賣、信號、聲譽和信息傳輸 適合本科及研究生 為教師提供完整的解決方案,為學生提供精選的解決方案

付費5元查看完整內容

摘要:

本文將優化描述為一個過程。在許多實際應用中,環境是如此復雜,以致于無法制定一個全面的理論模型,并使用經典算法理論和數學優化。采取一種穩健的方法是必要的,也是有益的,方法是應用一種不斷學習的優化方法,在觀察到問題的更多方面時從經驗中學習。這種將優化視為一個過程的觀點在各個領域都很突出,并在建模和系統方面取得了一些驚人的成功,現在它們已經成為我們日常生活的一部分。

作者介紹:

Elad Hazan是普林斯頓大學計算機科學教授。他于2015年從Technion畢業,當時他是該校運籌學副教授。他的研究重點是機器學習和優化的基本問題的算法設計和分析。他的貢獻包括合作開發用于訓練學習機器的AdaGrad算法,以及第一個用于凸優化的次線性時間算法。他曾(兩次)獲得2012年IBM Goldberg最佳論文獎,以表彰他對機器學習的次線性時間算法的貢獻。2008年,他還獲得了歐洲研究理事會(European Research Council)的一筆撥款、瑪麗?居里(Marie Curie)獎學金和谷歌研究獎(兩次)。他是計算學習協會的指導委員會成員,并擔任COLT 2015的項目主席。

//www.cs.princeton.edu/~ehazan/

付費5元查看完整內容

【導讀】圖數據處理是一個長期存在的研究課題,近年來又被深度學習領域廣泛關注。相關研究在數量和廣度上飛速增長,但這也導致了知識系統化的缺失和對早期文獻關注的缺失。《A Gentle Introduction to Deep Learning for Graphs》是圖深度學習領域的教程導論,它傾向于對主流概念和架構的一致和漸進的介紹,而不是對最新文獻的闡述。

教程在介紹概念和想法時采用了自上而下的方法并保留了清晰的歷史觀點,為此,導論在第2節中提供了圖表示學習的泛化形式,將圖表示學習泛化為一種基于局部和迭代的結構化信息處理過程。同時,介紹了架構路線圖,整個導論也是圍繞該路線圖進行開展的。導論聚焦于面向局部和迭代的信息處理過程,因為這些過程與神經網絡的體系更為一致。因此,導論會淡化那些基于圖譜理論的全局方法(假設有一個固定的鄰接矩陣)。

后續,導論介紹了可以用于組裝構建新奇和有效圖神經網絡模型的基本構建單元。導論還對圖深度學習中有意思的研究挑戰和應用進行了闡述,同時介紹了相關的方法。導論的內容大致如下:

  • 摘要

  • 簡介

  • 高階概覽

    • 數學符號

    • 動機

    • 路線圖

    • 局部關系和信息的迭代處理

    • 三種上下文傳播機制

  • 構建塊/單元

    • 鄰接聚合

    • 池化

    • 面向圖嵌入的節點聚合

    • 總結

  • 任務

    • 無監督學習

    • 有監督學習

    • 生成式學習

    • 總結

  • 其他方法和任務的總結

    • 圖譜方法

    • 隨機游走

    • 圖上的對抗訓練和攻擊

    • 圖序列生成模型

  • 開放挑戰和研究方法

    • 時間進化圖

    • 偏置方差權衡

    • 邊信息的明智用法

    • 超圖學習

  • 應用

    • 化學和藥物設計

    • 社交網絡

    • 自然語言處理

    • 安全

    • 時空預測

    • 推薦系統

  • 總結

付費5元查看完整內容

課程名稱: Introduction to Articial Intelligence

課程簡介:

本課程主要講述了人工智能相關知識,包括基本理論、練習和項目。

課程部分大綱:

  • 人工智能導論
  • 智能體
    • 教程:Python入門
  • 通過搜索來解決問題
    • 練習1:通過搜索來解決問題
    • 項目1:搜索算法
  • 約束滿足問題
    • 練習2:約束滿足問題
  • 游戲對抗性搜索
    • 練習3:游戲對抗性搜索
  • 表示不確定知識
    • 練習4:不確定性下的推理(第1部分)
  • 貝葉斯網絡中的推論
    • 練習5:不確定性下的推理(第二部分)
  • 隨時間推移的推理(第1部分)
  • 隨時間推移的推理(第2部分)

講師介紹:

Gilles Louppe是比利時列日大學人工智能和深度學習的副教授。他曾是紐約大學物理系和數據科學中心的博士后助理,與歐洲核子研究中心的阿特拉斯實驗關系密切。他的研究處于機器學習、人工智能和物理科學的交叉點上,他目前的研究興趣包括使用和設計新的機器學習算法,以新的和變革性的方式處理來自基礎科學的數據驅動的問題。

下載索引:鏈接://pan.baidu.com/s/1aUGwQx3YUWLit3RfKNNDNw;提取碼:c8lc

付費5元查看完整內容
北京阿比特科技有限公司