亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

無監督學習是機器學習的三個主要分支之一(以及監督學習和強化學習)。它也可以說是最不發達的分支。它的目標是通過發現和利用其隱藏結構來找到對輸入數據的簡約描述。據推測,與監督學習相比,這更讓人聯想到大腦的學習方式。此外,假設通過無監督學習發現的表示形式可以緩解深度監督和強化學習中的許多已知問題。但是,由于缺乏明確的ground-truth目標來優化,無監督學習的發展進展緩慢。在本次演講中,DeepMind研究科學家Irina Higgins和DeepMind研究工程師Mihaela Rosca概述了無監督表示學習的歷史作用以及開發和評估此類算法的困難。然后,他們將采取多學科的方法來思考什么可以做一個好的表示方法,以及為什么要這樣做,然后再對無監督的表示學習的當前最新方法進行廣泛的概述。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

【導讀】DeepMind開設了一系列深度學習課程。本次課講述了深度學習自然語言處理。

這個報告由DeepMind研究科學家菲利克斯·希爾(Felix Hill)主持,分為三個部分。首先,他討論了用ANN建模語言的動機:語言是高度上下文相關的,典型的非組合性的,依賴于協調許多競爭的信息來源。本節還涵蓋了Elman的發現結構在時間和簡單遞歸網絡,上下文和transformers的重要性。在第二部分,他探索了從Word2Vec到BERT的語言的無監督和表征學習。最后,Felix討論了情景語言理解,基礎和具體化語言學習。。

深度學習自然語言處理

付費5元查看完整內容

過去10年,卷積神經網絡徹底改變了計算機視覺。在這堂課中,DeepMind研究科學家Sander Dieleman通過幾個案例研究,從90年代早期到目前的技術狀態,對卷積網絡架構進行了更深入的研究。他還回顧了一些目前常用的構建模塊,討論了訓練深度模型的挑戰,以及尋找有效架構的策略,重點關注圖像識別。

付費5元查看完整內容

題目: Online Deep Clustering for Unsupervised Representation Learning

摘要:

聯合聚類和特征學習方法在無監督表示學習中表現出了顯著的效果。但是,特征聚類和網絡參數更新訓練計劃的交替導致視覺表征學習的不穩定。為了克服這個挑戰,我們提出在線深度集群(ODC),它可以同時執行集群和網絡更新,而不是交替進行。關鍵見解是,聚類中心應該穩步發展,以保持分類器的穩定更新。具體來說,設計和維護了兩個動態內存模塊,即樣本記憶用于存儲樣本標簽和特征,中心記憶用于中心進化。我們將全局聚類分解為穩定的內存更新和成批的標簽重新分配。該過程被集成到網絡更新迭代中。通過這種方式,標簽和網絡齊頭并進,而不是交替發展。大量的實驗表明,ODC能夠穩定訓練過程,有效地提高訓練性能。

付費5元查看完整內容

本文綜述了元學習在圖像分類、自然語言處理和機器人技術等領域的應用。與深度學習不同,元學習使用較少的樣本數據集,并考慮進一步改進模型泛化以獲得更高的預測精度。我們將元學習模型歸納為三類: 黑箱適應模型、基于相似度的方法模型和元學習過程模型。最近的應用集中在將元學習與貝葉斯深度學習和強化學習相結合,以提供可行的集成問題解決方案。介紹了元學習方法的性能比較,并討論了今后的研究方向。

付費5元查看完整內容

【導讀】Yann Lecun在紐約大學開設的2020春季《深度學習》課程,干貨滿滿。最新的一期是來自Facebook AI的研究科學家Ishan Misra講述了計算機視覺中的自監督學習最新進展,108頁ppt,很不錯報告。

在過去的十年中,許多不同的計算機視覺問題的主要成功方法之一是通過對ImageNet分類進行監督學習來學習視覺表示。并且,使用這些學習的表示,或學習的模型權值作為其他計算機視覺任務的初始化,在這些任務中可能沒有大量的標記數據。

但是,為ImageNet大小的數據集獲取注釋是非常耗時和昂貴的。例如:ImageNet標記1400萬張圖片需要大約22年的人類時間。

因此,社區開始尋找替代的標記過程,如社交媒體圖像的hashtags、GPS定位或自我監督方法,其中標簽是數據樣本本身的屬性。

什么是自監督學習?

定義自我監督學習的兩種方式:

  • 基礎監督學習的定義,即網絡遵循監督學習,標簽以半自動化的方式獲得,不需要人工輸入。

  • 預測問題,其中一部分數據是隱藏的,其余部分是可見的。因此,其目的要么是預測隱藏數據,要么是預測隱藏數據的某些性質。

自監督學習與監督學習和非監督學習的區別:

  • 監督學習任務有預先定義的(通常是人為提供的)標簽,

  • 無監督學習只有數據樣本,沒有任何監督、標記或正確的輸出。

  • 自監督學習從給定數據樣本的共現形式或數據樣本本身的共現部分派生出其標簽。

自然語言處理中的自監督學習

Word2Vec

  • 給定一個輸入句子,該任務涉及從該句子中預測一個缺失的單詞,為了構建文本前的任務,該任務特意省略了該單詞。

  • 因此,這組標簽變成了詞匯表中所有可能的單詞,而正確的標簽是句子中省略的單詞。

  • 因此,可以使用常規的基于梯度的方法對網絡進行訓練,以學習單詞級表示。

為什么自監督學習

自監督學習通過觀察數據的不同部分如何交互來實現數據的學習表示。從而減少了對大量帶注釋數據的需求。此外,可以利用可能與單個數據樣本相關聯的多個模式。

計算機視覺中的自我監督學習

通常,使用自監督學習的計算機視覺管道涉及執行兩個任務,一個前置任務和一個下游任務。

  • 下游任務可以是任何類似分類或檢測任務的任務,但是沒有足夠的帶注釋的數據樣本。

  • Pre-text task是為學習視覺表象而解決的自監督學習任務,其目的是利用所學習的表象,或下游任務在過程中獲得的模型權值。

發展Pre-text任務

  • 針對計算機視覺問題的文本前任務可以使用圖像、視頻或視頻和聲音來開發。

  • 在每個pre-text任務中,都有部分可見和部分隱藏的數據,而任務則是預測隱藏的數據或隱藏數據的某些屬性。

下載鏈接: 鏈接: //pan.baidu.com/s/1gNK4DzqtAMXyrD1fBFGa-w 提取碼: ek7i

付費5元查看完整內容

【導讀】如何利用未標記數據進行機器學習是當下研究的熱點。最近自監督學習、對比學習等提出用于解決該問題。最近來自Google大腦團隊的Luong博士介紹了無標記數據學習的進展,半監督學習以及他們最近重要的兩個工作:無監督數據增強和自訓練學習,是非常好的前沿材料。

深度學習盡管取得了很大成功,但通常在小標簽訓練集中表現不佳。利用未標記數據改善深度學習一直是一個重要的研究方向,其中半監督學習是最有前途的方法之一。在本次演講中,Luong博士將介紹無監督數據增強(UDA),這是我們最近的半監督學習技術,適用于語言和視覺任務。使用UDA,我們僅使用一個或兩個數量級標記較少的數據即可獲得最先進的性能。

在本次演講中,Luong博士首先解釋了基本的監督機器學習。在機器學習中,計算機視覺的基本功能是利用圖像分類來識別和標記圖像數據。監督學習需要輸入和標簽才能與輸入相關聯。通過這樣做,您可以教AI識別圖像是什么,無論是對象,人類,動物等。Luong博士繼續進一步解釋神經網絡是什么,以及它們如何用于深度學習。這些網絡旨在模仿人類大腦的功能,并允許AI自己學習和解決問題。

付費5元查看完整內容

題目: A Survey on Deep Geometry Learning: From a Representation Perspective

摘 要:

目前,研究人員已經在利用深度學習處理二維圖像方面取得了很大的成功。近年來,三維計算機視覺和幾何深度學習越來越受到人們的重視。針對不同的應用,提出了許多先進的三維造型技術。與二維圖像可以由像素的規則網格統一表示不同,三維圖形具有多種表示,如深度和多視圖圖像、基于體素的表示、基于點的表示、基于網格的表示、隱式的表面表示等。然而,不同應用程序的性能在很大程度上取決于所使用的表示,并且沒有一種惟一的表示可以適用于所有應用程序。因此,在本次調查中,我們從表象的角度回顧了三維幾何深度學習的最新發展,總結了不同表象在不同應用中的優缺點。我們也提出現有的數據集在這些表示和進一步討論未來的研究方向。

付費5元查看完整內容

NeurIPS 2019(Neural Information Processing Systems)將在12月8日-14日在加拿大溫哥華舉行。NeurIPS 是全球最受矚目的AI、機器學習頂級學術會議之一,每年全球的人工智能愛好者和科學家都會在這里聚集,發布最新研究。今天小編整理了表示學習相關論文。

  1. Self-attention with Functional Time Representation Learning

作者: Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, Kannan Achan

摘要:在自然語言處理中,具有self-attention的序列模型已經取得了很好的效果。self-attention具有模型靈活性、計算復雜性和可解釋性等優點,正逐漸成為事件序列模型的重要組成部分。然而,像大多數其他的序列模型一樣,自我注意并不能解釋事件之間的時間跨度,因此它捕捉的是序列信號而不是時間模式。在不依賴遞歸網絡結構的情況下,self-attention通過位置編碼來識別事件的順序。為了彌補時間無關和時間相關事件序列建模之間的差距,我們引入了一個嵌入時間跨度到高維空間的功能特征映射。通過構造相關的平移不變時間核函數,揭示了經典函數函數分析結果下特征圖的函數形式,即Bochner定理和Mercer定理。我們提出了幾個模型來學習函數性時間表示以及與事件表示的交互。這些方法是在各種連續時間事件序列預測任務下對真實數據集進行評估的。實驗結果表明,所提出的方法與基線模型相比,具有更好的性能,同時也能捕獲有用的時間-事件交互。
論文鏈接:
//papers.nips.cc/paper/9720-self-attention-with-functional-time-representation-learning

  1. Large Scale Adversarial Representation Learning

作者:Jeff Donahue, Karen Simonyan

摘要:對抗訓練生成模型(GANs)最近取得了引人注目的圖像合成結果。GANs在無監督的表現學習中盡管在早期取得了的成功,但是它們已經被基于自監督的方法所取代。在這項工作中,我們證明了圖像生成質量的進步轉化為極大地改進了表示學習性能。我們的方法BigBiGAN建立在最先進的BigGAN模型之上,通過添加編碼器和修改鑒別器將其擴展到表示學習。我們廣泛地評估了這些BigBiGAN模型的表示學習和生成能力,證明了這些基于生成的模型在ImageNet的無監督表示學習方面達到了最新的水平,并在無條件生成圖像方面取得了令人信服的結果。

論文鏈接:

  1. Rethinking Kernel Methods for Node Representation Learning on Graphs

作者:Yu Tian, Long Zhao, Xi Peng, Dimitris Metaxas

摘要:圖核是度量圖相似性的核心方法,是圖分類的標準工具。然而,作為與圖表示學習相關的一個問題,使用核方法進行節點分類仍然是不適定的,目前最先進的方法大多基于啟發式。在這里,我們提出了一個新的基于核的節點分類理論框架,它可以彌補這兩個圖上表示學習問題之間的差距。我們的方法是由圖核方法驅動的,但是擴展到學習捕獲圖中結構信息的節點表示。我們從理論上證明了我們的公式與任何半正定核一樣強大。為了有效地學習內核,我們提出了一種新的節點特征聚合機制和在訓練階段使用的數據驅動的相似度度量。更重要的是,我們的框架是靈活的,并補充了其他基于圖形的深度學習模型,如圖卷積網絡(GCNs)。我們在一些標準節點分類基準上對我們的方法進行了經驗評估,并證明我們的模型設置了最新的技術狀態。
論文鏈接:

  1. Continual Unsupervised Representation Learning

作者:Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, Raia Hadsell

摘要:持續學習旨在提高現代學習系統處理非平穩分布的能力,通常是通過嘗試按順序學習一系列任務。該領域的現有技術主要考慮監督或強化學習任務,并經常假設對任務標簽和邊界有充分的認識。在這項工作中,我們提出了一種方法(CURL)來處理一個更普遍的問題,我們稱之為無監督連續學習。重點是在不了解任務身份的情況下學習表示,我們將探索任務之間的突然變化、從一個任務到另一個任務的平穩過渡,甚至是數據重組時的場景。提出的方法直接在模型中執行任務推斷,能夠在其生命周期內動態擴展以捕獲新概念,并結合其他基于排練的技術來處理災難性遺忘。我們用MNIST和Omniglot演示了CURL在無監督學習環境中的有效性,在這種環境中,沒有標簽可以確保沒有關于任務的信息泄露。此外,與現有技術相比,我們在i.i.中表現出了較強的性能。在i.i.d的設置下,或將該技術應用于監督任務(如漸進式課堂學習)時。 論文鏈接:

  1. Unsupervised Scalable Representation Learning for Multivariate Time Series

作者: Jean-Yves Franceschi, Aymeric Dieuleveut, Martin Jaggi

摘要:由于時間序列在實際應用中具有高度可變的長度和稀疏標記,因此對機器學習算法而言,時間序列是一種具有挑戰性的數據類型。在本文中,我們提出了一種學習時間序列通用嵌入的無監督方法來解決這一問題。與以前的工作不同,它的長度是可伸縮的,我們通過深入實驗和比較來展示學習表示的質量、可移植性和實用性。為此,我們將基于因果擴張卷積的編碼器與基于時間負采樣的新三重態損耗相結合,獲得了可變長度和多元時間序列的通用表示。
論文鏈接:

  1. A Refined Margin Distribution Analysis for Forest Representation Learning

作者:Shen-Huan Lyu, Liang Yang, Zhi-Hua Zhou

摘要:在本文中,我們將森林表示學習方法casForest作為一個加法模型,并證明當與邊際標準差相對于邊際均值的邊際比率足夠小時,泛化誤差可以以O(ln m/m)為界。這激勵我們優化比例。為此,我們設計了一種邊際分布的權重調整方法,使深林模型的邊際比較小。實驗驗證了邊緣分布與泛化性能之間的關系。我們注意到,本研究從邊緣理論的角度對casForest提供了一個新的理解,并進一步指導了逐層的森林表示學習。

論文鏈接:

  1. Adversarial Fisher Vectors for Unsupervised Representation Learning

作者:Shuangfei Zhai, Walter Talbott, Carlos Guestrin, Joshua Susskind

摘要:我們通過基于深度能量的模型(EBMs)來研究生成對抗網絡(GANs),目的是利用從這個公式推導出的密度模型。與傳統的鑒別器在達到收斂時學習一個常數函數的觀點不同,這里我們證明了它可以為后續的任務提供有用的信息,例如分類的特征提取。具體來說,在EBM公式中,鑒別器學習一個非歸一化密度函數(即,負能量項),它描述了數據流形。我們建議通過從EBM中獲得相應的Fisher分數和Fisher信息來評估生成器和鑒別器。我們證明了通過假設生成的示例形成了對學習密度的估計,費雪信息和歸一化費雪向量都很容易計算。我們還證明了我們能夠推導出例子之間和例子集之間的距離度量。我們進行的實驗表明,在分類和感知相似性任務中,甘氏神經網絡誘導的費雪向量作為無監督特征提取器表現出了競爭力。代碼地址:
論文鏈接:

  1. vGraph: A Generative Model for Joint Community Detection and Node Representation Learning

作者:Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang

摘要:本文重點研究了圖數據分析的兩個基本任務:社區檢測和節點表示學習,它們分別捕獲圖數據的全局結構和局部結構。在現有的文獻中,這兩個任務通常是獨立研究的,但實際上是高度相關的。提出了一種協作學習社區成員和節點表示的概率生成模型vGraph。具體地說,我們假設每個節點都可以表示為群落的混合,并且每個群落都定義為節點上的多項分布。混合系數和群落分布均由節點和群落的低維表示參數化。我們設計了一種有效的變分推理算法,通過反向傳播進行優化,使相鄰節點的社區成員關系在潛在空間中相似。在多個真實圖上的實驗結果表明,vGraph在社區檢測和節點表示學習兩方面都非常有效,在兩方面都優于許多有競爭力的基線。結果表明,該vGraph框架具有良好的靈活性,可以方便地擴展到層次社區的檢測。
論文鏈接:

付費5元查看完整內容
北京阿比特科技有限公司