隨著大型語言模型(LLMs)的最新進展,結合LLMs與多模態學習的興趣日益增長。先前關于多模態大型語言模型(MLLMs)的綜述主要集中在理解方面。本綜述詳細闡述了不同領域的多模態生成,包括圖像、視頻、3D和音頻,并重點介紹了這些領域的里程碑式的顯著進展。具體來說,我們詳盡調查了這些方法背后的關鍵技術組件和研究中使用的多模態數據集。此外,我們深入探討了可以利用現有生成模型進行人機交互的工具增強型多模態代理。最后,我們還全面討論了人工智能安全的進展,并研究了新興應用及未來前景。我們的工作提供了對多模態生成的系統且深入的概述,預計將推動生成內容人工智能(AIGC)和世界模型的發展。所有相關論文的精選列表可以在//github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation找到。
人與物理世界的互動涉及來自多種模態的信息,例如語言、視覺和音頻。因此,實現一個世界模擬器也需要模型能夠以靈活的方式感知和響應多模態信息。最近,OpenAI提出了一個基礎視頻生成模型Sora [1],能夠生成高度逼真的視頻作為世界模擬器。它在模擬或生成真實世界視頻方面取得了很大進展,但無法生成其他模態,如文本、3D和音頻。此外,它缺乏感知其他模態(如圖像、視頻、3D和音頻)的能力,使其成為一個無法全面理解的世界模擬器。
在過去的幾年中,研究人員專注于單一模態的生成并取得了很大的進展:在文本生成方面,我們見證了從BERT [2]、GPT1 [3]、GPT2 [4]、GPT3 [5]、GPT4 [6]到ChatGPT [7]、LLaMA [8]、[9]的定性飛躍,模型參數和訓練樣本數量迅速增長,導致模態能力和產品部署的不斷提升。在視覺生成領域,隨著擴散模型和大規模圖文數據集的快速進步,圖像生成取得了顯著成就,能夠根據各種用戶提供的提示文本合成高質量的圖像 [10]–[13]。隨后,通過視頻擴散模型和大規模視頻語言數據集,視頻生成領域也取得了重要進展,出現了許多開創性的工作,如 [14]–[22] 和Sora [1]。在3D生成方面,隨著CLIP [23]模型的出現,一些方法 [24]–[26] 嘗試將文本信息帶入3D表示的渲染圖像(即點云、網格、NeRF [27]和高斯投影 [28]),這些方法在文本到3D生成方面取得了顯著進展。此外,將Stable Diffusion (SD) [10]與文本到圖像渲染相結合,推動了一系列文本到3D生成的工作 [29]–[43]。強大的文本到圖像模型幫助3D生成實現了更高的性能和更好的結果。在音頻生成領域,一系列代表性工作涉及不同的音頻域,如 [44]–[46] 的文本到音頻、 [47]–[49] 的文本到音樂和 [50]–[55] 的文本到語音,它們在生成高質量的自然聲音、音樂和人類級語音方面取得了顯著的性能。
隨著大型語言模型(LLMs)的顯著進步,其他非文本模態開始利用LLMs的力量來增強其生成流程,或將文本生成與非文本生成集成到一個統一系統中,旨在實現更高級的功能和改進的生成性能。在圖像生成方面,有兩類方法與語言模型實現了顯著的整合。第一類方法涉及將視覺信息編碼為離散的令牌ID,試圖統一視覺理解與生成 [56]–[61]。具體來說,視覺信息被編碼為令牌表示,LLMs直接理解并生成視覺令牌,從而實現視覺理解與生成的同步。第二類方法專注于利用LLMs提升現有預訓練文本到圖像(T2I)模型的生成質量:一類工作涉及利用LLMs作為布局規劃器,結合對象的空間位置、數量和對象大小的知識,生成所需的邊界框 [62]–[66]。在獲得邊界框后,可以通過一個基于文本到圖像(T2I)模型生成圖像 [67]。另一種方法是利用LLMs擴展用戶輸入的提示 [68]:通過提供高度詳細和全面的用戶提示,LLMs通過豐富提示信息生成高質量的圖像。在LLMs的幫助下,視覺生成實現了更高的生成質量、改進的提示跟隨能力、對話功能和用戶友好界面。在視頻生成方面,LLMs作為統一的多模態聯合生成的通用骨干 [69]、[70],用于視頻布局規劃 [63]、[71]–[74] 和動態指導的時間提示生成 [75]–[79]。在3D生成和編輯方面,LLMs作為用戶與3D資產之間的橋梁,提高了交互效率 [80]、[81] 并幫助用戶理解 [82]、[83] 3D資產。在音頻生成和編輯方面,語言模型主要作為多模態音頻的協調骨干 [84]–[96],用于特定任務的條件器 [97]–[99],用于音頻理解的標簽器 [100]–[102],以及用于交互生成/編輯的代理 [103]–[108],并作為新方法的靈感來源 [47]、[48]、[53]、[109]–[111]。LLMs在音頻領域的日益廣泛使用不僅改變了我們與聲音和音樂互動的方式,還擴展了AGI與音頻技術交叉點的邊界。此外,多模態代理將多種模態整合到一個系統中,開發出一個能夠理解和生成非文本模態的通用系統。因此,LLMs在生成各種模式的內容中扮演著越來越不可或缺的角色。
為了賦能世界模擬器并推動多模態生成的發展,在這項工作中,我們對涉及LLMs在多模態生成中的工作及其在這一過程中的角色進行了全面回顧。如圖1所示,我們將LLMs的角色總結為幾個關鍵方面,如評估者、標注者、指令處理器、規劃者、語義指導的提供者或骨干架構。此外,我們在第9節討論了AIGC時代的重要安全問題,在第10節和第11節探討了新興應用和未來前景。
我們總結了我們的貢獻如下:
我們首先在第2節回顧了關于特定模態生成和LLMs的相關綜述。接著在第3節簡要回顧了代表性生成模型、多模態編碼器、Transformer和LLMs的基本技術。然后,我們在第4節、第5節、第6節、第7節和第8節分別回顧了基于LLMs的不同視覺模態的視覺生成,包括圖像、視頻、3D、音頻和多模態代理。最后,我們在第9節討論了生成式AI的安全性,并在第11節探討了基于LLMs的多模態生成領域的幾個潛在未來方向。
范圍
本綜述探討了多種模態的生成,包括圖像、視頻、3D模型和音頻。我們的多模態生成綜述涵蓋了不同模態的單獨生成以及多模態的聯合生成。我們不會深入探討純文本生成,因為已有許多綜述專門關注該領域的進展 [112]–[114]。我們的主要關注點是近年來大型語言模型的出現如何幫助生成其他視覺和音頻模態,特別是在開放域生成方面。這將有助于我們設計更好的多模態統一生成模型。具體來說,我們關注以下任務:
視覺與語言導航(VLN)近年來受到越來越多的關注,許多方法已經涌現出來以推動其發展。基礎模型的顯著成就已經塑造了VLN研究的挑戰和提出的方法。在本綜述中,我們提供了一種自上而下的審視方法,采用了一種原則性框架進行具身規劃和推理,并強調了利用基礎模型應對VLN挑戰的當前方法和未來機會。我們希望通過深入的討論提供有價值的資源和見解:一方面,用以標記進展里程碑,探索基礎模型在該領域的機會和潛在作用;另一方面,為基礎模型研究者整理VLN中的各種挑戰和解決方案。
開發能夠與人類及其周圍環境互動的具身代理是人工智能(AI)的長期目標之一(Nguyen et al., 2021; Duan et al., 2022)。這些AI系統在實際應用中具有巨大的潛力,可以作為多功能助手在日常生活中發揮作用,如家庭機器人(Szot et al., 2021)、自動駕駛汽車(Hu et al., 2023)和個人助理(Chu et al., 2023)。一個推進這一研究方向的正式問題設置是視覺與語言導航(VLN)(Anderson et al., 2018),這是一項多模態和協作任務,要求代理根據人類指令探索三維環境,并在各種模糊情況下進行在場通信。多年來,VLN在仿真環境(Chang et al., 2017; Savva et al., 2019; Xia et al., 2018)和實際環境(Mirowski et al., 2018; Banerjee et al., 2021)中都進行了探索,產生了許多基準測試(Anderson et al., 2018; Ku et al., 2020; Krantz et al., 2020),每個基準測試都提出了稍有不同的問題表述。
近年來,基礎模型(Bommasani et al., 2021)從早期的預訓練模型如BERT(Kenton and Toutanova, 2019)到當代的大型語言模型(LLMs)和視覺語言模型(VLMs)(Achiam et al., 2023; Radford et al., 2021)展現出了在多模態理解、推理和跨領域泛化方面的非凡能力。這些模型在海量數據上進行了預訓練,如文本、圖像、音頻和視頻,并可以進一步適應廣泛的具體應用,包括具身AI任務(Xu et al., 2024)。將這些基礎模型整合到VLN任務中標志著具身AI研究的一個關鍵進展,表現出顯著的性能提升(Chen et al., 2021b; Wang et al., 2023f; Zhou et al., 2024a)。基礎模型還為VLN領域帶來了新的機會,例如從多模態注意力學習和策略政策學習擴展到預訓練通用的視覺和語言表征,從而實現任務規劃、常識推理以及泛化到現實環境。
盡管基礎模型對VLN研究產生了最近的影響,以往關于VLN的綜述(Gu et al., 2022; Park and Kim, 2023; Wu et al., 2024)來自基礎模型時代之前,主要關注VLN基準測試和傳統方法,即缺少利用基礎模型解決VLN挑戰的現有方法和機會的全面概述。特別是隨著LLMs的出現,據我們所知,尚未有綜述討論它們在VLN任務中的應用。此外,與以前將VLN任務視為孤立的下游任務的努力不同,本綜述的目標有兩個:首先,標記進展里程碑,探索基礎模型在該領域的機會和潛在作用;其次,在系統框架內為基礎模型研究者組織VLN中的不同挑戰和解決方案。為建立這種聯系,我們采用LAW框架(Hu and Shu, 2023),其中基礎模型作為世界模型和代理模型的骨干。該框架提供了基礎模型中推理和規劃的一般景觀,并與VLN的核心挑戰緊密相關。
具體而言,在每一步導航中,AI代理感知視覺環境,接收來自人類的語言指令,并基于其對世界和人類的表征進行推理,以規劃行動并高效完成導航任務。如圖1所示,世界模型是代理理解周圍外部環境以及其行動如何改變世界狀態的抽象(Ha and Schmidhuber, 2018; Koh et al., 2021)。該模型是一個更廣泛的代理模型的一部分,該代理模型還包含一個人類模型,該模型解釋其人類伙伴的指令,從而告知代理的目標(Andreas, 2022; Ma et al., 2023)。為了回顧VLN領域不斷增長的工作并理解所取得的里程碑,我們采用自上而下的方法進行綜述,重點關注從三個角度出發的基本挑戰:
我們在圖2中展示了一個分層和細粒度的分類法,基于基礎模型討論每個模型的挑戰、解決方案和未來方向。為了組織本綜述,我們首先簡要概述該領域的背景和相關研究工作以及可用的基準測試(第2節)。我們圍繞提出的方法如何解決上述三個關鍵挑戰進行結構化審查:世界模型(第3節)、人類模型(第4節)和VLN代理(第5節)。最后,我們討論了當前的挑戰和未來的研究機會,特別是在基礎模型興起的背景下(第6節)。
一個典型的視覺與語言導航(VLN)代理在指定位置接收來自人類指令者的(一系列)語言指令。代理使用以自我為中心的視覺視角在環境中導航。通過遵循指令,代理的任務是在一系列離散視圖或較低級別的動作和控制(例如,前進0.25米)上生成軌跡,以到達目的地。如果代理到達距離目的地指定距離(例如3米)以內的位置,則任務被認為成功。此外,代理可以在導航過程中與指令者交換信息,可以請求幫助或進行自由形式的語言交流。此外,人們對VLN代理集成額外任務(如操作任務(Shridhar et al., 2020)和物體檢測(Qi et al., 2020b))的期望也在不斷增加。
如表1所示,現有的VLN基準測試可以根據幾個關鍵方面進行分類:(1)導航發生的世界,包括領域(室內或室外)和環境的具體情況。(2)涉及的人機交互類型,包括交互回合(單次或多次)、通信格式(自由對話、限制對話或多重指令)和語言粒度(動作導向或目標導向)。(3)VLN代理,包括其類型(如家庭機器人、自動駕駛車輛或自主飛行器)、動作空間(基于圖形、離散或連續)和額外任務(操作和物體檢測)。(4)數據集的收集,包括文本收集方法(人類生成或模板化)和路徑演示(人類執行或規劃生成)。有代表性的是,Anderson等人(2018)基于Matterport3D模擬器(Chang et al., 2017)創建了Room-to-Room(R2R)數據集,代理需要遵循精細的導航指令到達目標。Room-across-Room(RxR)(Ku et al., 2020)是一個多語言版本,包括英語、印地語和泰盧固語指令。它提供了更大的樣本量,并為虛擬姿態提供了時間對齊的指令,豐富了任務的語言和空間信息。Matterport3D允許VLN代理在離散環境中操作,并依賴預定義的連接圖進行導航,代理通過在相鄰節點之間的傳送在圖上移動,被稱為VLN-DE。為了使簡化的設置更現實,Krantz等人(2020)、Li等人(2022c)、Irshad等人(2021)通過將離散的R2R路徑轉移到連續空間(Savva等人,2019)提出了連續環境中的VLN(VLN-CE)。Robo-VLN(Irshad等人,2021)通過引入在機器人環境中更現實的連續動作空間的VLN,進一步縮小了模擬到現實的差距。最近的VLN基準測試經歷了幾次設計變更和期望,我們在第6節中討論這些變更。
三種主要指標用于評估導航路徑規劃性能(Anderson等人,2018):(1)導航誤差(NE),代理最終位置與目標位置之間最短路徑距離的平均值;(2)成功率(SR),最終位置足夠接近目標位置的百分比;(3)成功率加權路徑長度(SPL),通過軌跡長度標準化成功率。一些其他指標用于衡量指令遵循的忠實度和預測軌跡與真實軌跡之間的一致性,例如:(4)按長度加權的覆蓋得分(CLS)(Jain等人,2019);(5)歸一化動態時間規整(nDTW)(Ilharco等人,2019),對偏離真實軌跡的情況進行懲罰;以及(6)按成功率加權的歸一化動態時間規整(sDTW)(Ilharco等人,2019),對偏離真實軌跡的情況進行懲罰,并考慮成功率。
盡管在大型語言模型(LLMs)中加速文本生成對于高效產生內容至關重要,但這一過程的順序性往往導致高推理延遲,從而對實時應用構成挑戰。為了解決這些挑戰并提高效率,已經提出并開發了各種技術。本文對自回歸語言模型中加速生成技術進行了全面的綜述,旨在了解最先進的方法及其應用。我們將這些技術分為幾個關鍵領域:投機解碼、提前退出機制和非自回歸方法。我們討論了每個類別的基本原理、優點、局限性和最新進展。通過這篇綜述,我們希望能夠提供對當前LLMs技術領域的見解,并為該自然語言處理關鍵領域的未來研究方向提供指導。
大語言模型(LLMs)的推理需要大量的計算資源,這歸因于多個因素。其中關鍵因素之一是諸如GPT家族[1]、LLaMA家族[2]、PaLM[3]、OPT[4]和Mistral[5]等模型固有的復雜性,這些模型通常包含數百萬甚至數十億個參數。因此,通過這些模型的眾多神經網絡層處理輸入數據需要大量的計算資源。此外,推理過程計算密集,涉及復雜的操作,如矩陣乘法、非線性激活和跨多個層的注意力機制。此外,LLMs需要大內存分配,因為它們的參數中包含了廣泛的數據存儲,包括詞嵌入和注意力矩陣。此外,自回歸解碼的性質,即輸出令牌基于先前生成的令牌逐步生成,限制了并行化的潛力,特別是對于較長的序列,導致推理速度較慢。最后,LLMs中常用的注意力機制用于捕捉輸入數據中的長程依賴關系,這增加了計算復雜性,特別是在計算大輸入序列的注意力分數時。綜上所述,這些因素使得大語言模型的推理需要大量的計算資源和時間。
為了解決加速大語言模型推理的挑戰,已經開發了各種方法。這些技術包括知識蒸餾[6, 7, 8, 9]、量化[10, 11, 12, 13]、稀疏化[14, 15, 16]、修改后的注意力機制[17, 18, 19, 20]。然而,提高大語言模型效率的另一個關鍵方面在于其解碼機制。本綜述聚焦于LLMs的這些解碼機制,探索和評估其在加速推理的同時保持或提高性能的作用。LLMs中的生成方法指的是這些模型如何基于輸入數據生成輸出序列。這涉及選擇最可能的下一個令牌,以在每一步構建連貫且有意義的序列。然而,加速這一過程面臨著若干挑戰。一個主要挑戰是自回歸解碼的固有順序性,即每個令牌基于先前生成的令牌生成。這種順序依賴性限制了并行化的潛力,特別是在較大模型中導致推理速度較慢。另一個挑戰是,在加速生成過程的同時保持生成輸出的質量。任何加速技術必須確保生成的序列保持準確、連貫和上下文相關。加速生成應保持模型生成高質量輸出的能力,同時所需的計算資源可能非常龐大。
本文全面討論了各種加速生成技術。第2節討論了投機解碼方法,第3節探討了提前退出方法,第4節研究了非自回歸算法(并行解碼)策略。通過詳細分類和深入分析,我們提供了對這些大語言模型機制的深刻見解,強調其優點、局限性和未來研究方向。如圖1所示,圖中展示了不同算法的分類法,本文討論的加速生成技術根據其基本原理和方法進行了分類和可視化。
投機解碼技術通過并行預測多個令牌并同時驗證這些預測,有效地提高了生成速度。這一技術受啟發于處理器中的投機執行優化技術,通過并行執行任務來驗證其必要性,從而提高并發性。
Blockwise解碼是一種經典的投機解碼方法,通過在模型內部并行評分來加速解碼過程。該方法首先在訓練時在原解碼層后增加多輸出前饋層,并訓練多個輔助“提議”模型以并行預測多個令牌。在推理時,這些模型并行生成下一個k個令牌,并通過基本模型對這些令牌進行評分,確定最長的前綴。如果這個前綴的長度超過1,則可以跳過一個或多個貪心解碼循環,從而加快推理速度。
SpecDec方法通過引入Spec-Drafter和Spec-Verification兩個組件,進一步優化了投機解碼過程。Spec-Drafter是一個獨立的模型,專注于高效準確地生成令牌草稿,而Spec-Verification則允許接受略微偏離貪心解碼的令牌,從而提高接受率。實驗結果表明,SpecDec方法在保持生成質量的同時,實現了約5倍的速度提升。
自我投機解碼(SSD)是一種不需要輔助草稿模型的新穎推理方案,而是利用單一LLM同時進行草稿生成和驗證,從而減少了總內存使用。在草稿階段,部分中間層被跳過,選擇這些層是通過貝葉斯優化完成的。在驗證階段,使用原始LLM對草稿令牌進行一次前向傳遞評估。雖然跳過額外層可以加速草稿生成,但也可能降低令牌接受率,增加整體推理時間。因此,層選擇過程被設計為優化問題,目標是最小化每個令牌的平均推理時間。
提前退出機制通過動態調整每個輸入和生成時間步的計算資源分配,有效地加速了生成過程。這一機制基于對樣本難度的觀察,動態調整計算資源,避免對簡單樣本的過度計算,同時確保復雜樣本的精確處理。
Confident Adaptive Language Modeling(CALM)框架通過動態分配計算資源,根據中間層的置信度得分決定是否提前退出計算,從而加速生成過程。CALM框架探索了三種不同的置信度測量方法:Softmax響應、隱藏狀態飽和度和早退出分類器。通過這些方法,模型可以在達到預定義閾值時提前退出,避免全層計算,從而加速推理。
Fast and Robust Early-Exiting(FREE)方法通過引入淺層-深層模塊和同步并行解碼,提高了推理效率。FREE框架將計算路徑分為淺層模型和深層模型,在解碼時同步處理來自淺層模型的早退出令牌,直到遇到非退出令牌。通過Beta混合模型(BMM),FREE方法能有效捕捉置信度得分與預測一致性的關系,從而動態調整閾值,提高推理效率。
Hash-based Early Exiting(HASH EE)通過哈希函數為每個令牌分配固定的退出層,避免了傳統方法中的內部分類器或額外參數,從而提高了推理效率。HASH EE的優勢在于無需監督即可實現令牌級提前退出,適用于多種任務,包括語言理解和生成任務。
非自回歸模型通過同時或并行生成所有目標令牌,避免了自回歸模型中逐令牌生成的順序性,顯著加速了推理過程。非自回歸模型在處理諸如機器翻譯等任務時,表現出更高的推理效率。
非自回歸Transformer(NAT)模型在機器翻譯任務中首次引入,通過預測每個輸入詞的繁殖數量來確定目標句子的長度。在訓練和推理過程中,NAT模型通過復制源輸入來初始化解碼器輸入,并使用繁殖預測器來決定每個輸入詞應復制多少次,從而構建目標句子長度。通過這種方法,NAT模型實現了與自回歸模型相當的質量,同時推理延遲降低了十倍以上。
FlowSeq模型使用生成流技術,通過引入潛變量提高了非自回歸生成過程的依賴性建模。FlowSeq通過生成流對先驗分布進行編碼,引入潛變量,從而在非自回歸生成過程中建模輸出令牌之間的依賴關系,同時實現高效并行解碼。實驗結果表明,FlowSeq在保持性能的同時,實現了顯著的推理加速。
依賴感知解碼器(DePA)通過雙向依賴建模和注意力轉換過程,提高了非自回歸模型對目標依賴的建模效果。DePA模型采用前向-后向依賴建模,在非自回歸訓練之前進行自回歸前向-后向預訓練,增強解碼器對目標依賴的建模能力。
本文全面探討了各種加速生成技術,包括投機解碼、提前退出機制和非自回歸方法。通過詳細的分類和分析,我們總結了當前技術的優勢、局限性和最新進展,為研究人員和工程師在實際應用中提供了寶貴的參考。未來,隨著技術的不斷發展,這些加速生成方法有望進一步優化,提高LLMs在各種應用場景中的實用性和效率。 通過不斷優化和創新,我們期待LLMs能夠在更廣泛的領域中展現其強大的潛力,實現實時高效的文本生成。
視頻基礎模型(ViFMs)旨在為各種視頻理解任務學習通用表示。通過利用大規模數據集和強大的模型,ViFMs通過從視頻數據中提取穩健且通用的特征來實現這一目標。這篇綜述分析了超過200個視頻基礎模型,提供了針對14種不同視頻任務的基準和評估指標的全面概覽,并將其分為3個主要類別。此外,我們還對最常見的6種視頻任務的這些模型進行了深入的性能分析。我們將ViFMs分為三類:1)基于圖像的ViFMs,將現有的圖像模型應用于視頻任務;2)基于視頻的ViFMs,采用特定于視頻的編碼方法;3)通用基礎模型(UFMs),在單一框架內結合多種模態(圖像、視頻、音頻和文本等)。通過比較各種ViFMs在不同任務上的性能,這篇綜述提供了有關它們優缺點的寶貴見解,為視頻理解的未來進展提供指導。我們的分析結果令人驚訝地發現,基于圖像的基礎模型在大多數視頻理解任務上始終優于基于視頻的模型。此外,利用多模態的UFMs在視頻任務上表現出色。我們在以下地址分享了這項研究中所分析的ViFMs完整列表://github.com/NeeluMadan/ViFM_Survey.git
強大的計算資源的日益普及和不斷增長的數據集推動了基礎模型的發展[10, 24]。這些多功能的AI模型使用自監督學習或半監督學習在海量數據上進行訓練,可以通過微調用于各種下游任務。最初的成功集中在靜態圖像上[123, 238],例如CLIP[238]和SAM[139]等模型都取得了令人印象深刻的成果。最近的研究[322, 352]已將這一成果擴展到視頻領域,開發出了幾種針對視頻基礎模型(ViFMs)的預訓練策略。 盡管視頻分析和生成數十年來一直是計算機視覺社區關注的焦點[19, 30, 134, 142, 278, 281],但由于任務的復雜性、額外的時間維度以及數據量龐大,這一問題在很大程度上一直具有挑戰性。最初開發的方法主要基于使用標準圖像分析技術處理各個幀并在其上加入時間維度[30, 80]。或者,專為視頻設計的更高級技術也被開發出來,例如3D卷積[338]、循環網絡、光流的使用以及Transformers[7, 19],直接作用于視頻,從而提供更好的時間建模。此外,針對增強視頻理解的多模態角色的研究也有顯著發展[111, 245]。 我們在ViFMs的發展中也看到了類似的趨勢,延續了圖像(基于圖像的ViFMs)、獨立的視頻建模(基于視頻的ViFMs)以及結合額外模態(例如自動語音識別(ASR))(通用基礎模型,Universal FMs)的路徑。 動機和貢獻:視頻理解領域正在經歷顯著的進步,這可以從日益增長的專注于各類視頻理解任務的研究論文數量中看出(圖1)。這種增長與大規模預訓練技術的發展相吻合。這些技術在適應不同任務方面表現出非凡的能力,只需最少的額外訓練即可實現強大的泛化。因此,研究人員正在積極探索這些基礎模型在解決各種視頻理解挑戰中的作用。為了在這個快速發展的研究領域中導航(見圖2),對視頻理解模型進行系統的綜述是必要的。我們試圖通過對用于視頻理解任務的基礎模型進行全面分析來填補這一關鍵空白。我們希望這篇綜述能夠為視頻理解相關的未來研究方向提供路線圖。
我們綜述的主要貢獻: * 本文首次對部署于各種視頻理解任務的基礎模型(ViFMs)進行了全面的綜述。我們將ViFMs分為三類:1)基于圖像的ViFMs:僅在圖像數據上進行訓練。2)基于視頻的ViFMs:在訓練期間利用視頻數據。3)通用基礎模型(UFMs):在預訓練期間結合多種模態(圖像、視頻、音頻、文本)。 * 我們獨特地根據視頻理解任務中對時間維度的涉入程度對其進行了分類。此外,還提供了與每個分類任務相關的數據集和評估指標的詳細列表。 * 我們對每個類別的ViFMs進行了全面的比較,分析了各種研究成果。這一分析揭示了有關最有效的ViFMs在不同視頻理解任務中的寶貴見解。 * 本綜述進一步指出了ViFMs面臨的關鍵挑戰,強調了需要進一步研究關注的開放性問題。此外,我們討論了ViFM開發的有前景的未來方向,為視頻理解的進步鋪平道路。
相關綜述:盡管一些綜述深入探討了特定的視頻理解任務[353, 366]或圖像的基礎模型[10],如Shiappa等人[252]提供了關于自監督視頻理解方法的詳盡綜述,但近年來這一領域已經發生了顯著變化。隨著大規模基礎模型的興起,需要對這些模型在視頻理解背景下進行全面的綜述。據我們所知,我們的綜述是第一個提供用于視頻理解的基礎模型的全面概述。 論文組織結構:在論文的第一部分(第2節),我們涵蓋了從視頻分類到生成的各種視頻分析任務。我們討論了廣泛使用的架構和損失函數,以及與大規模預訓練相關的數據集。接下來,我們解釋了ViFMs的主要類別,即:基于圖像的ViFMs(第3節)、基于視頻的ViFMs(第4節)和通用基礎模型(UFMs)(第5節)(有關分類法請參見圖5)。最后(第6-7節),我們比較并討論了所介紹模型的性能,并展示了該領域的挑戰和未來方向。
多模態融合致力于整合來自多種模態的信息,目的是實現更準確的預測。在包括自動駕駛和醫療診斷等廣泛的場景中,多模態融合已取得顯著進展。然而,在低質量數據環境下,多模態融合的可靠性大部分仍未被探索。本文綜述了開放多模態融合面臨的常見挑戰和最新進展,并將它們呈現在一個全面的分類體系中。從數據中心的視角,我們確定了低質量數據上多模態融合面臨的四個主要挑戰,即**(1)噪聲多模態數據,它們被不同種類的噪聲污染;(2)不完整的多模態數據,某些模態缺失;(3)不平衡的多模態數據,不同模態的質量或屬性有顯著差異;以及(4)質量變化的多模態數據**,每種模態的質量會根據不同樣本動態變化。這一新的分類體系將使研究人員能夠理解該領域的現狀,并識別出幾個潛在的研究方向。我們還討論了這一領域的開放問題以及有趣的未來研究方向。
//arxiv.org/abs/2404.18947 我們對世界的感知基于多種模態,例如觸覺、視覺、聽覺、嗅覺和味覺。即使某些感官信號不可靠,人類也能從不完美的多模態輸入中提取有用線索,并進一步拼湊出正在發生事件的整個場景【1】。隨著感知技術的發展,我們可以輕松收集各種形式的數據進行分析。為了充分釋放每種模式的價值,多模態融合作為一種有前景的范式出現,通過整合所有可用線索進行下游分析任務,以獲得精確和可靠的預測,例如醫學圖像分析、自動駕駛車輛【2】【3】和情感識別【4】【5】【6】。直觀地說,融合來自不同模式的信息提供了探索跨模態相關性并獲得更好性能的可能性。然而,人們越來越認識到,廣泛使用的AI模型常常被低質量數據中的假相關性和偏見所誤導。在現實世界中,由于意外的環境因素或傳感器問題,不同模態的質量通常存在差異。一些最近的研究實證和理論上表明,傳統的多模態融合可能在野外的低質量多模態數據上失敗,例如不平衡【7】【8】【9】【10】、噪聲【11】或甚至損壞【12】的多模態數據。為了克服這一限制,并向實際應用中強大且通用的多模態學習邁進一步,我們確定了低質量多模態數據的特性,并專注于現實世界多模態機器融合的一些獨特挑戰。我們還強調了可能有助于使多模態融合在開放環境中更加可靠和值得信賴的技術進展。在本文中,我們識別并探索了圍繞低質量多模態數據的多模態融合的四個核心技術挑戰。它們總結如下(也在圖1中直觀展示): (1) 噪聲多模態數據。第一個基本挑戰是學習如何減輕多模態數據中任意噪聲的潛在影響。高維多模態數據往往包含復雜的噪聲。多模態數據的異質性使得識別和減少潛在噪聲成為挑戰,同時也提供了通過探索不同模態之間的相關性來識別和減少噪聲的機會。 (2) 不完整的多模態數據。第二個基本挑戰是如何學習帶有部分缺失模態的多模態數據(即不完整的多模態數據)。例如,在醫療領域,即使是患有同一疾病的患者也可能選擇不同的醫療檢查,產生不完整的多模態數據。開發能夠處理不完整多模態數據的靈活且可靠的多模態學習方法是一個具有挑戰性但充滿希望的研究方向。 (3) 不平衡的多模態數據。第三個基本挑戰是如何減輕模態間偏差和差異的影響。例如,視覺模態通常比聽覺模態更有效,導致模型采取捷徑且缺乏對音頻的探索。盡管現有融合方法表現出有希望的性能,但它們可能無法在某些偏好特定模態的應用上比單模態主導模型表現更好。 (4) 質量動態變化的多模態數據。第四個基本挑戰是如何適應多模態數據的質量動態變化性質。在實踐中,由于不可預見的環境因素或傳感器問題,一個模態的質量通常會因不同樣本而變化。例如,在低光或逆光條件下,RGB圖像的信息量不如熱成像模態。因此,在實際應用中,意識到融合中的質量變化并動態整合多模態數據是必要的。 為了應對這些日益重要的多模態融合問題,本研究系統地組織了通過幾個分類體系的關鍵挑戰。與以往討論各種多模態學習任務【13】【14】的相關工作不同,這項綜述主要關注多模態學習中最基本的問題以及在下游任務中低質量多模態數據所引起的獨特挑戰,包括聚類、分類、對象檢測和語義分割。在以下部分中,我們通過最近的進展和多模態融合面臨的技術挑戰詳細介紹了這一領域:在噪聲多模態數據上的學習(第2節)、缺失模態插補(第3節)、平衡多模態融合(第4節)和動態多模態融合(第5節)。第6節提供了一個作為結論的討論。 在噪聲多模態數據上的學習
在現實世界場景中收集高質量的多模態數據不可避免地面臨著由噪聲帶來的重大挑戰。多模態數據【15】的噪聲可能源于傳感器錯誤【16】、環境干擾或傳輸損失。對于視覺模態,傳感器中的電子噪聲會導致細節丟失。此外,音頻模態可能因環境因素受到意外的扭曲。更糟糕的是,弱對齊甚至未對齊的多模態樣本也常見,這存在于更高級別的語義空間中。幸運的是,考慮多模態之間的相關性或更好地利用多模態數據可以幫助融合噪聲多模態數據。各種相關工作【16】【17】【18】表明,多模態模型超越了它們的單模態對應物。這可以歸因于多模態數據利用不同模態之間的相關性,識別和減輕潛在噪聲的能力。 多模態噪聲大致可以根據其來源分為兩類:1) 模態特定噪聲,來源于各個模態的傳感器錯誤、環境因素或傳輸;2) 跨模態噪聲,來源于未對齊的多模態對,可以被視為語義級別的噪聲。
不完整多模態學習
在真實應用中收集的多模態數據常常不完整,某些樣本的部分模態因意外因素(如設備損壞、數據傳輸和存儲損失)而缺失。例如,在面向用戶的推薦系統中,瀏覽行為歷史和信用評分信息可能并不總是對某些用戶可用【48】。同樣地,雖然結合多種模態的數據,例如磁共振成像(MRI)掃描、正電子發射斷層掃描(PET)和腦脊液(CSF)信息,可以為阿爾茨海默病提供更準確的診斷【49】【50】,但由于PET掃描的高測量成本和CSF的不適感侵入性測試,一些患者可能拒絕進行這些檢查。因此,在阿爾茨海默病診斷中常見不完整的多模態數據【51】。通常,傳統的多模態學習模型假設多模態數據的完整性,因此不能直接適用于部分模態缺失的情況。針對這一問題,旨在探索具有部分缺失模態的不完整多模態數據的信息的不完整多模態學習出現,并在近年來獲得了越來越多的研究關注【52】。在本節中,我們主要關注不完整多模態學習研究的當前進展。從是否對缺失數據進行插補的角度來看,我們將現有方法分為兩大類,包括基于插補的和無插補的不完整多模態學習,其中基于插補的方法進一步分為兩組,如圖2所示,包括實例和模態級別的插補。 平衡多模態學習
不同的模態之間緊密相關,因為它們從不同的視角描述同一概念。這一屬性激發了多模態學習的興盛,其中多種模態被整合,旨在增強對相關事件或對象的理解。然而,盡管存在自然的跨模態相關性,每種模態都有其獨特的數據來源和形式。例如,音頻數據通常表現為一維波形,而視覺數據則由像素組成的圖像構成。一方面,這種差異賦予了每種模態不同的屬性,如收斂速度,然后使得同時處理和學習所有模態變得困難,給聯合多模態學習帶來了難度。另一方面,這種差異也反映在單模態數據的質量上。盡管所有模態描述相同的概念,它們與目標事件或對象相關的信息量不同。例如,考慮一個標有會議的音視覺樣本,視覺數據明顯顯示了會議的視覺內容,這很容易被識別(見圖1c)。而相應的音頻數據是嘈雜的街道汽車聲,很難與會議標簽建立聯系。視覺模態的信息量顯然比音頻模態多。由于深度神經網絡的貪婪本性【9】,多模態模型傾向于僅依賴具有充足與目標相關信息的高質量模態,同時對其他模態欠擬合。為了應對這些挑戰并提高多模態模型的效能,最近的研究集中于策略上,以平衡模態之間的差異并增強模型的整體性能。 動態多模態融合
當前的多模態融合方法常基于一種假設,即多模態數據的質量是靜態的,這在現實世界場景中并不總是成立的。處理具有動態變化質量的多模態數據是多模態智能系統不可避免的問題。由于意外的環境因素和傳感器問題,一些模態可能會遭受可靠性差和丟失任務特定信息的問題。此外,不同模態的質量會根據場景動態變化,如圖5所示。這一現象激發了一種新的多模態學習范式,即動態多模態融合,其目標是適應多模態數據質量的動態變化并有選擇性地整合任務特定信息。在本節中,我們關注動態多模態融合的挑戰,并將當前文獻中的進展分類為三個主要方向,包括啟發式、基于注意力和意識到不確定性的動態融合。
去噪擴散模型已經成為各種圖像生成和編輯任務的強大工具,促進了以無條件或輸入條件方式合成視覺內容。它們背后的核心思想是學習逆轉逐漸向圖像添加噪聲的過程,使它們能夠從復雜分布中生成高質量樣本。在這篇綜述中,我們提供了一個關于使用擴散模型進行圖像編輯的現有方法的詳盡概述,涵蓋了該領域的理論和實踐方面。我們深入分析并從多個角度對這些工作進行了分類,包括學習策略、用戶輸入條件和可以完成的特定編輯任務的范圍。此外,我們特別關注圖像修復和擴展,并探索了早期的傳統上下文驅動方法和當前的多模態條件方法,提供了它們方法論的全面分析。為了進一步評估文本引導的圖像編輯算法的性能,我們提出了一個系統的基準,EditEval,特色是一個創新的指標,LMM分數。最后,我們討論了當前的局限性,并設想了未來研究的一些潛在方向。伴隨的倉庫發布在 //github.com/SiatMMLab/Awesome-Diffusion-Model-Based-Image-Editing-Methods。
在人工智能生成內容(AIGC)的領域中,利用人工智能來創建和修改數字內容,圖像編輯被認為是創新和實際應用的重要領域。與從最小輸入創建新圖像的圖像生成不同,圖像編輯涉及更改圖像的外觀、結構或內容,包括從微妙的調整到重大變革的一系列更改。這項研究在數字媒體、廣告和科學研究等各個領域都至關重要,其中改變視覺內容是必需的。圖像編輯的演變反映了數字技術的進步,從手工、勞動密集型過程發展到由基于學習的算法驅動的高級數字技術。在這一演進中的一個關鍵進步是生成對抗網絡(GANs)[1]-[6]的引入,顯著增強了創造性圖像操作的可能性。
最近,擴散模型在AIGC[1],[7]-[15]中嶄露頭角,帶來了視覺生成任務的顯著突破。擴散模型,受到非平衡熱力學[15]原理的啟發,通過逐漸向數據添加噪聲,然后學習逆轉這一過程,從隨機噪聲生成直到產生與源數據分布匹配的所需數據。它們大致可以分為去噪擴散基礎[15]-[18]和分數匹配基礎[19]-[23]。它們的適應性和有效性導致了在各種任務中的廣泛應用,如圖像生成[24]-[38]、視頻生成[39]-[56]、圖像恢復[57]-[71]和圖像編輯。
在圖像編輯中應用擴散模型的興趣激增,近年來在這一領域的研究出版物數量顯著增加為證。這種日益增長的關注突顯了擴散模型在改善圖像編輯性能方面相比于以往工作的潛力和多功能性。鑒于這一顯著進步,系統地回顧和總結這些貢獻是必要的。然而,現有關于擴散模型的綜述文獻集中在其他特定視覺任務上[72]-[75],如視頻應用[73]或圖像恢復與增強[74],[75]。一些提到圖像編輯的綜述往往只提供了一個粗略的概述[76]-[83],缺少對方法的詳細和專注探索。
為了填補這一空缺,我們進行了一項綜述,提供了一項專注于圖像編輯的深入和全面分析。我們深入研究了這一領域擴散模型所實現的方法論、輸入條件和廣泛的編輯任務。該綜述批判性地回顧了超過100篇研究論文,根據學習策略將它們組織成三個主要類別:基于訓練的方法、測試時微調方法和無需訓練和微調的方法。每個類別根據其核心技術進一步劃分,分別在第4、5和6節中進行了詳細討論。我們還探索了這些方法中使用的10種不同類型的輸入條件,包括文本、遮罩、參考(Ref.)圖像、類別、布局、姿態、草圖、分割(Seg.)圖、音頻和拖動點,以展示擴散模型在多樣化圖像編輯場景中的適應性。此外,我們的綜述提出了一種新的圖像編輯任務分類,將其劃分為三大類:語義編輯、風格編輯和結構編輯,涵蓋了12種特定類型。圖1直觀地表示了研究在學習策略、輸入條件和編輯任務類別之間的統計分布。另外,我們特別關注了修復和外擴,這兩者共同構成了一種獨特的編輯類型。我們探索了早期的傳統和當前的多模態條件方法,第7節提供了它們方法論的全面分析。我們還介紹了EditEval,這是一個旨在評估文本引導的圖像編輯算法的基準,詳細內容在第8節。特別地,我們通過利用大型多模態模型(LMMs)的先進視覺-語言理解能力,提出了一個有效的評估指標,LMM分數。最后,我們在第9節中展示了一些當前的挑戰和潛在的未來趨勢作為展望。 總之,這項綜述旨在系統地分類和批判性地評估基于擴散模型的圖像編輯研究的廣泛文獻。我們的目標是提供一個全面的資源,不僅綜合了當前的發現,而且還指導了這一快速進步領域的未來研究方向。
除了擴散模型在圖像生成、恢復和增強方面取得的重大進展之外,它們在圖像編輯方面也取得了顯著的突破,與之前占主導地位的GANs相比,提供了更強的可控性。與從零開始創建新圖像的圖像生成不同,以及旨在修復和提高降級圖像質量的圖像恢復和增強,圖像編輯涉及修改現有圖像的外觀、結構或內容,包括添加對象、替換背景和改變紋理等任務。
在這項綜述中,我們根據它們的學習策略將圖像編輯論文組織成三個主要群體:基于訓練的方法、測試時微調方法和無需訓練和微調的方法,分別在第4、5和6節中詳細闡述。此外,我們探索了這些方法用來控制編輯過程的10種類型的輸入條件,包括文本、遮罩、參考(Ref.)圖像、類別、布局、姿勢、草圖、分割(Seg.)圖、音頻和拖動點。此外,我們研究了這些方法可以完成的12種最常見的編輯類型,這些類型被組織成以下三大類。
語義編輯:這一類別包括對圖像內容和敘述的修改,影響所描繪場景的故事、背景或主題元素。該類別內的任務包括對象添加(Obj. Add.)、對象移除(Obj. Remo.)、對象替換(Obj. Repl.)、背景更改(Bg. Chg.)和情感表達修改(Emo. Expr. Mod.)。
風格編輯:這一類別專注于增強或轉換圖像的視覺風格和美學元素,而不改變其敘述內容。該類別內的任務包括顏色更改(Color Chg.)、紋理更改(Text. Chg.)和整體風格更改(Style Chg.),涵蓋藝術和現實風格。
結構編輯:這一類別涉及圖像內元素的空間布局、位置、視點和特性的更改,強調場景內對象的組織和呈現。該類別內的任務包括對象移動(Obj. Move.)、對象大小和形狀更改(Obj. Size. Chg.)、對象動作和姿勢更改(Obj. Act. Chg.)和透視/視點更改(Persp./View. Chg.)。
表1全面總結了對調研論文的多角度分類,提供了快速搜索。
在基于擴散模型的圖像編輯領域中,基于訓練的方法已經獲得了顯著的突出地位。這些方法不僅因其穩定訓練擴散模型和有效建模數據分布而著稱,也因其在多種編輯任務中的可靠性能而備受關注。為了徹底檢查這些方法,我們根據它們的應用范圍、訓練所需的條件以及監督類型,將它們分類為四個主要組,如圖2所示。進一步地,在每個主要組內,我們根據它們的核心編輯方法將這些方法分類為不同的類型。這一分類展示了這些方法的范圍,從針對特定領域的應用到更廣泛的開放世界用途。
在圖像生成和編輯中,測試時微調代表了向精確度和控制性邁進的重要一步。本節探討了各種微調策略(見圖5),這些策略增強了圖像編輯的能力。如圖6所示,這些方法范圍從微調整個去噪模型到專注于特定層或嵌入。我們研究了微調整個模型、針對特定參數和優化基于文本的嵌入的方法。此外,我們討論了超網絡的集成和直接圖像表示優化。這些方法共同展示了微調技術在圖像編輯中的不斷復雜化和有效性,滿足了廣泛的編輯需求和用戶意圖。
在圖像編輯領域中,無需訓練和微調的方法起始于它們快速且低成本的前提——因為在整個編輯過程中,它們不需要任何形式的訓練(針對數據集)或微調(針對源圖像)。本節根據它們所修改的內容,將這些方法分為五個類別,如圖7和8所示。它們巧妙地利用擴散模型內在的原則來實現它們的編輯目標。
結論
我們已經全面概述了基于擴散模型的圖像編輯方法,從多個角度檢查了這一領域。我們的分析首先根據它們的學習策略,將超過100種方法分類為三個主要群體:基于訓練的、測試時微調的,以及無需訓練和微調的方法。然后,我們將圖像編輯任務分類為三個不同的類別:語義編輯、風格編輯和結構編輯,總共包含12種特定類型。我們探索了這些方法及其對提高編輯性能的貢獻。我們的圖像編輯基準EditEval中對7個任務及最近的最先進方法進行了評估。此外,引入了一種新的度量LMM分數,用于這些方法的比較分析。總結我們的綜述,我們強調了圖像編輯領域內的廣泛潛力,并建議了未來研究的方向。
近來,持續圖學習在非靜態環境下處理多樣的圖結構數據任務中被越來越多地采用。盡管其學習能力充滿希望,當前關于持續圖學習的研究主要集中在緩解災難性遺忘問題,而忽視了持續性能改進。為了彌補這一差距,本文旨在提供一個關于持續圖學習最近努力的全面綜述。具體而言,我們從克服災難性遺忘的角度引入了一個新的持續圖學習分類法。此外,我們系統地分析了在持續提高性能中應用這些持續圖學習方法的挑戰,然后討論可能的解決方案。最后,我們提出了與持續圖學習發展相關的開放問題和未來方向,并討論它們如何影響持續性能改進。隨著深度學習在生活各領域的成功應用,社區開始渴望更強大的通用人工智能。盡管具有前景的潛力,基于神經網絡的持續學習面臨著一個嚴重的遺忘問題:在新任務上的學習通常會導致舊任務上性能的急劇下降,這被稱為災難性遺忘(CF)[95]。持續學習(CL)[46, 122] 被認為是克服這一挑戰的有希望的方式。CL 被視為智能代理逐步獲取、更新、積累并利用知識以持續改善其在任務上性能的學習能力[46]。為了緩解災難性遺忘問題,已經提出了許多CL策略,包括重放方法、正則化方法和參數隔離方法[27]。這些策略在智能代理的可塑性和穩定性之間尋找平衡,并減輕了災難性遺忘的問題。然而,當前的CL僅考慮單個數據樣本,并忽略了它們之間普遍存在的聯系。此外,克服CF僅代表著實現持續性能改進(CPI)的一條必不可少的路徑,而不是CL的終點。圖,也稱為網絡,是一種描述和分析具有交互作用實體的通用數據表示。圖已被廣泛采用于模擬不同應用中不同類型的關系,從生物分子到社會網絡。一方面,許多數據自然以圖的形式存在,如引文網絡、社交網絡和交易網絡。另一方面,即使那些看似未連接的數據也可以人為地構建成圖,如文本中的依賴圖、圖像中的特征圖和代碼中的調用圖。最近,圖學習已成為AI和機器學習中一個有前景的領域,由于其在學習實體間錯綜復雜的關系及相應的網絡結構方面的優勢。
然而,圖學習也受到了災難性遺忘現象的困擾。將持續學習與圖學習整合顯然也是緩解災難性遺忘的流行解決方案。持續圖學習(CGL)的整合稱為持續圖學習。盡管CGL具有潛力,但由于歐幾里得數據與圖之間的結構差異,一般CL與CGL之間存在顯著或復雜的差異,包括模型、任務設置和方法。此外,CL和CGL主要關注克服災難性遺忘,而忽視了持續性能改進。盡管關于CGL的研究數量在增加,但關于CGL的綜述很少。為了彌補這一差距,本文旨在提供一個關于CGL研究努力的全面綜述,特別是討論CGL方法如何實現持續性能改進。本綜述與現有綜述的不同之處。由于CGL與持續學習和圖學習高度相關,兩個領域都有許多綜述。表1將相關綜述歸類為CL、圖學習和CGL。特別是,關于持續學習的綜述大多關注(i)特定領域,如自然語言處理(NLP)[11]、計算機視覺(CV)[97]、機器人學[71]和自主系統[109];(ii)特定任務,如分類[27, 88];以及(iii)模型,如神經網絡[8, 46, 93]。然而,它們都只從孤立的角度而非綜合角度考慮數據。此外,它們過分強調緩解災難性遺忘,而忽視了持續性能改進,這是持續學習的最終目標。關于圖學習的綜述主要關注特定技術,包括圖表示學習[12, 24, 43, 48, 49]、圖神經網絡[138, 170]和圖深度學習[9, 41, 164]。此外,這些研究大多數通常考慮樣本級別的連接數據,而忽略了特征級別和任務級別的連接。另外,它們只關注靜態圖而忽略了在動態圖上的持續學習。盡管有幾項綜述考慮了圖的動態性質,包括動態圖學習[171]、動態圖表示學習[10, 62, 145]和動態圖神經網絡[116],它們主要考慮模型是否適應新數據,而忽略了災難性遺忘問題,從而完全排除了CL。據我們所知,只有兩篇綜述全面整合了持續學習和圖學習。特別是,[35] 回顧了CGL的研究進展、潛在應用和挑戰,而 [154] 則分類了克服CGL中災難性遺忘的方法。盡管它們明確考慮了持續學習中數據之間的聯系并專注于CGL,但它們沒有構建一個全面的視角,并且未能徹底闡述CL和CGL之間的關系和差異。此外,它們主要關注緩解災難性遺忘,而忽略了持續性能改進。
貢獻。本綜述總結了CGL領域的最新研究,并討論了當前方法是否以及如何實現持續性能改進。具體來說,我們的主要貢獻如下所述:
圖1展示了本文的組織結構。第2節介紹了CL和圖學習的基礎知識。第3節提出了CGL的概述,包括形式化、動機以及克服災難性遺忘的CGL方法的新分類法。具體來說,它從特定維度比較了與CGL相關的領域。第4至第7節根據提出的分類法總結了CGL的最近進展。在每一個類別中,都調查了主要挑戰及其相應的解決方案。此外,還從知識增強和優化控制的角度討論了這些方法如何實現持續性能改進。第8節總結了現有CLG研究中使用的實際應用和數據集。此后,第9節討論了開放問題和未來方向。最后,第10節總結了本文。
持續圖學習分類法持續圖學習本質上是持續學習的一個子領域,因此,持續圖學習的目標與常規持續學習相同:通過增量學習實現模型的持續性能改進。然而,由于圖中節點之間的相互依賴性,持續圖學習在方法上比常規持續學習更為復雜和多樣化。因此,我們提出了當前持續圖學習方法的一個新分類法,該分類法分為四個類別:基于重放的方法、基于正則化的方法、基于架構的方法和基于表示的方法,如圖3所示。所提出的分類法主要關注那些明確聲稱能夠克服災難性遺忘的方法,因為當前的工作很少涉及持續性能改進。然而,我們從知識的角度討論了災難性遺忘的根本原因和持續性能改進的關鍵,并進一步討論這些方法是否以及如何實現持續性能改進。從知識的角度看,災難性遺忘的根本原因是新知識對現有知識的覆蓋。假設某一時期的知識是有限的,并且可以在持續學習的設置中學到,那么持續學習的目標就是學習所有知識并在特定任務上實現持續性能改進。基于這種考慮,持續性能改進等同于持續獲取新知識或對現有知識的補充。這通常可以通過兩種方式實現:知識增強和優化控制。知識增強指的是后續任務的知識可以增強先前任務的知識。例如,人們在低年級學習四則運算,并使用它們來解決現實世界中的問題。然而,他們不使用變量來代表數字,因此在理解對象之間的數量關系時容易犯錯。在他們高年級學習變量和方程式后,他們將使用變量方程來理解和建模對象之間的數量關系,這給他們犯錯的機會更少。在這個例子中,變量和方程是對基本四則運算的增強。知識增強可以通過學習正樣本或負樣本來實現。優化控制指的是控制學習過程。如果學習過程可以用完成度來量化,完全學習肯定優于不完全學習。類比地,那些在課堂上認真聽講并完成所有作業的學生通常會比那些在課堂上分心并留下空白作業的學生表現得更好。在本文中,我們遵循上述考慮來討論和分析當前持續圖學習方法是否以及如何實現持續性能改進。
基于重放的方法利用從先前任務中學到的知識,與當前數據一起進行聯合訓練,以避免在學習新任務時發生災難性遺忘。基于重放方法的關鍵是獲取從先前任務中學到的知識,這通常通過抽樣或生成模型來獲得。圖4總結了基于重放的方法。
基于正則化的方法通過顯式考慮拓撲結構并向損失函數添加相應的正則化項來平衡舊任務和新任務的學習,以此來規范梯度方向,從而限制對先前任務至關重要的參數的劇烈變化,以克服災難性遺忘。正則化項通常有兩種方式:約束和蒸餾。圖5總結了基于正則化的方法。
基于架構的方法通過特定架構為任務分配任務特定的參數或網絡(部分共享或不共享),以避免任務之間的干擾。這些架構可以是固定的或動態的,如圖6所示。
由于節點之間的相互依賴性以及任務間邊緣的存在,新的增量圖將會影響先前的圖,而且先前任務的知識也可以傳遞給后續任務。這種知識難以顯式地納入持續圖學習,但可以隱式地編碼在節點嵌入中,我們將此稱為基于表示的方法。其基本原理是,現有的節點嵌入已經包含了下游任務所需的所有必要信息,而通過這種方法獲得的嵌入等同于弱化的聯合訓練。一般來說,基于表示的方法可以總結為分離和傳輸,如圖7所示。
結論 由于圖在現實世界中的普遍存在和動態性質,由圖神經網絡(GNNs)代表的圖模型已在各個領域得到廣泛應用。持續圖學習是一種新興的學習范式,旨在持續學習設置中進行圖學習任務,并實現持續性能改進。在這篇綜述中,我們提供了對持續圖學習近期研究的全面回顧。我們提出了一種新的分類法,用于總結克服災難性遺忘的持續圖學習方法。此外,對于每個類別,我們簡要闡明了關鍵問題,詳細描述了當前研究中的相應實踐,并討論了實現持續性能改進的可能解決方案。進一步地,我們還提出了一些與持續性能改進相關的開放問題,并建議了相應的有前景的研究方向。我們希望這篇綜述能幫助讀者理解持續圖學習的最近進展,并對這個有前景的領域的未來發展提供一些啟示。
近期在基礎模型上的發展,如大型語言模型(LLMs)和視覺-語言模型(VLMs),它們基于大量數據訓練,促進了跨不同任務和模態的靈活應用。它們的影響覆蓋了多個領域,包括健康護理、教育和機器人技術。本文提供了基礎模型在現實世界機器人應用中的概覽,主要強調在現有機器人系統中替換特定組件。總結包括了基礎模型中輸入輸出關系的視角,以及它們在機器人技術領域內的感知、運動規劃和控制中的作用。本文最后討論了實際機器人應用面臨的未來挑戰和含義。
近期在人工智能領域的進步顯著擴展了機器人的操作能力,使它們能夠承擔多種多樣的活動【1-5】。雖然最初機器人的部署主要限于大規模生產環境【6-11】,但現在工業機器人的適用性已經擴展到小批量和高多樣性生產領域,包括室內空間和災難現場【12-15】。這種擴散不僅僅限于環境多樣性的增加;它還擴展到了任務范圍的擴大,包括日常活動,如整理【16-18】、洗滌【19,20】、擦拭【21,22】和烹飪【23,24】。機器學習為滿足這些機器人系統的需求提供了一種方式。然而,僅僅在特定領域數據上訓練每個模型對于多樣的機器人、任務和環境來說是不夠的。越來越多地需要開發可以使用單一的、預訓練的系統或模塊應用于各種機體、任務和環境的機器人。 解決這一挑戰的一個方案是引入基礎模型【25】。基礎模型是在大量數據上訓練的模型,可以通過上下文學習、微調或甚至零樣本的方式輕松應用于廣泛的下游任務【26,27】。顯著的例子包括大型語言模型(LLMs)如GPT【27】和視覺-語言模型(VLMs)如CLIP【28】,其中語言是結合各種類型模態的粘合劑。這些基礎模型的影響是顯著的,有幾篇綜述文章討論了它們在不同領域的影響【29-32】。Wang等人【29】和Zeng等人【30】進行了關于大型語言模型在機器人學中應用的綜述,而Firoozi等人【31】和Hu等人【32】進行了更廣泛的綜述,關注于基礎模型在機器人學中的應用。在本文中,我們總結了基礎模型對現實世界機器人的適用性,旨在加速它們在實際機器人應用中的采用。與其他綜述文章相比,我們提供了如何從基礎模型的輸入輸出關系以及機器人學中的感知、運動規劃和控制的角度,用基礎模型替換現有機器人系統中的特定組件的總結。 本研究的結構如圖1所示。在第2節中,我們將描述基礎模型本身。特別地,我們將根據它們使用的模態類型,例如視覺【33,34】、語言【35-41】等,以及它們可以應用的下游任務類型進行分類。在第3節中,我們將基于當前應用【2,3,42】描述如何將基礎模型應用于機器人學。一般來說,機器人需要配備感知模塊、規劃模塊和控制模塊。從這個角度,我們分類了可以將基礎模型應用于現實世界機器人學的方式,包括低級感知、高級感知、高級規劃和低級規劃。此外,我們還將解釋在訓練直接連接低級感知和低級規劃的映射時,對機器人學的數據增強。在第4節中,我們將描述包括機器人實體在內的基礎模型,即機器人基礎模型,包括關于如何就模型架構、數據集和學習目標制作這些機器人基礎模型的討論。在第5節中,我們將描述使用基礎模型的機器人、任務和環境。我們將任務分類為導航、操縱、帶有操縱的導航、運動和交流。最后,我們將討論未來的挑戰并提出我們的結論。
“基礎模型”一詞最初在【25】中被引入。在這項綜述中,我們將簡單描述在機器人應用中使用的基礎模型的類型,以及下游任務,將關于基礎模型本身的討論推遲到【25】。在2012年,深度學習因ILSVRC-2012比賽的獲勝模型而獲得機器學習社區的主流關注【43】。2017年,由【44】介紹的Transformer模型,促進了自然語言處理(NLP)【45】和計算機視覺【46】領域的重大進步。到2021年,一個經過大量數據訓練、能夠輕松應用于廣泛下游任務的模型被稱為“基礎模型”【25】。基礎模型的特點主要有三個:
上下文學習 * 規模定律 * 同質化
上下文學習使得僅用幾個例子就能完成新任務成為可能,無需重新訓練或微調。規模定律允許隨著數據、計算資源和模型大小的增加而持續提升性能。同質化允許某些基礎模型架構以統一的方式處理多種模態。 在這一章中,我們從在機器人學中的適用性的角度對基礎模型進行分類。機器人利用基礎模型的最關鍵標準是選擇使用哪些模態。本章從語言、視覺、音頻、3D表示和各種其他模態的角度討論了基礎模型的類型和它們可以執行的下游任務。在利用每種模態的背景下,我們進一步從網絡輸入和輸出的角度對基礎模型進行分類。概覽顯示在圖2中。請注意,我們的目標不是在這里全面覆蓋基礎模型;我們的重點仍然在于解決模態差異和基礎模型的分類。
通常,機器人的行為由感知、規劃和控制組成。在本研究中,我們將感知分為兩個類別:低級感知和高級感知。同時,我們將規劃和控制分別稱為高級規劃和低級規劃。加上對學習這些組成部分的數據增強,我們將機器人對基礎模型的利用分為以下五個類別。 * 低級感知 * 高級感知 * 高級規劃 * 低級規劃 * 數據增強
這些類別之間的關系如圖3所示。用于低級感知的基礎模型包括在圖像或3D表示中的語義分割和邊界框提取,以及在各種模態中的特征提取。用于高級感知的基礎模型涉及將從低級感知獲得的結果轉換和利用成如地圖、獎勵和運動約束等形式。用于高級規劃的基礎模型執行更高級別的抽象任務規劃,不包括直接控制。用于低級規劃的基礎模型執行較低級別的運動控制,包括關節和末端執行器控制。用于數據增強的基礎模型在執行連接低級感知和低級規劃的學習時,通過數據增強增強魯棒性。 在實踐中,通過組合這五種利用方法創建了各種應用。主要分為四種類型,如圖4所示。 (i) 進行低級感知,然后用高級規劃規劃行為。 (ii) 通過低級感知和高級感知提取獎勵和運動約束,并用于強化學習和軌跡優化。 (iii) 通過低級感知和高級感知生成地圖、場景圖等,并將它們作為任務規劃的基礎。 (iv) 使用數據增強,穩健地進行直接關聯低級感知的特征提取和控制輸入的端到端學習。 值得注意的是,也有一些研究方法不適用于這一框架。 從這些角度出發,我們選取了幾篇具有代表性的論文并在表1中進行了總結。
在快速發展的自然語言生成(NLG)評估領域中,引入大型語言模型(LLMs)為評估生成內容質量開辟了新途徑,例如,連貫性、創造力和上下文相關性。本綜述旨在提供一個關于利用LLMs進行NLG評估的全面概覽,這是一個缺乏系統分析的新興領域。我們提出了一個連貫的分類體系來組織現有的基于LLM的評估指標,提供了一個結構化的框架來理解和比較這些方法。我們的詳細探索包括批判性地評估各種基于LLM的方法論,以及比較它們在評估NLG輸出時的優勢和局限性。通過討論尚未解決的挑戰,包括偏見、穩健性、領域特定性和統一評估,本綜述旨在為研究人員提供洞見,并倡導更公平、更先進的NLG評估技術。
自然語言生成(NLG)處于現代AI驅動通信的前沿,近期在大型語言模型(LLMs)方面的進展徹底改變了NLG系統的能力(Ouyang et al., 2022; OpenAI, 2023)。這些模型,依靠深度學習技術和大量的訓練數據,展現出在廣泛應用中生成文本的卓越能力。隨著NLG技術的快速發展,建立可靠的評估方法以準確衡量生成內容的質量變得越來越重要。
傳統的NLG評估指標,如BLEU(Papineni et al., 2002)、ROUGE(Lin, 2004)和TER(Snover et al., 2006),主要關注表面層面的文本差異,通常在評估語義方面存在不足(Freitag et al., 2020)。這一局限性已被指出阻礙了研究進展,并可能導致誤導性的研究結論。此外,其他使用神經嵌入來計算分數的方法(Liu et al., 2016; Sellam et al., 2020; Zhang et al., 2020),盡管在評估諸如語義等價性和流暢性方面有所考慮,但它們的靈活性有限,適用范圍受限(Freitag et al., 2021a)。此外,這些傳統方法與人類判斷的一致性較低(Liu et al., 2023c),且對分數的解釋性不足(Xu et al., 2023)。這些缺點突顯了NLG領域需要更細膩和全面的評估方法的需求。
大型語言模型(LLMs)涌現的能力為基于LLM的NLG評估提供了有前景的途徑,例如Chain-of-Thought(CoT)(Wei et al., 2022b)、零次學習指令跟隨(Wei et al., 2022a)、更好地與人類偏好相一致(Ouyang et al., 2022)等。這些特性使LLMs成為評估NLG輸出的有力工具,與傳統方法相比提供了更為復雜和更好地與人類一致的評估(Liu et al., 2023c;Kocmi and Federmann, 2023;Fu et al., 2023)。例如,LLMs可以生成合理的解釋來支持最終評分(Xu et al., 2023),而利用人類反饋的強化學習(RLHF)可以使LLMs的偏好更好地與人類一致(Ouyang et al., 2022;Zheng et al., 2023)。如圖1所示,這些方法的關鍵策略涉及指示LLMs使用提示來從不同方面評估生成的文本,無論是否有參考資料和來源。然而,眾多基于LLM的NLG評估方法,針對不同的任務和目標,缺乏統一的概述。
鑒于LLMs在NLG評估領域的工作量不斷增加,迫切需要一個綜合總結來導航這一領域內的復雜性和多樣化方法。本綜述旨在提供這一有前景領域的全面概述,呈現一個用于組織現有工作的連貫分類體系。我們詳細勾勒了關鍵研究及其方法論,并深入分析了這些方法的各種優點、局限性和獨特屬性。此外,我們探索了該領域內尚未解決的挑戰和開放性問題,從而為未來的學術探索勾畫出潛在的途徑。這一全面探索旨在激發讀者對LLM在NLG評估中方法的細微差別和不斷變化的動態有深入的了解。
本綜述的組織:我們呈現了利用LLMs進行NLG評估的首個全面綜述。首先,我們建立了NLG評估的正式框架,并提出了一個分類體系來分類相關工作(第2節)。隨后,我們深入并詳細闡述這些工作(第3節)。此外,我們對評估LLM評估者有效性的各種元評估基準進行了系統回顧(第4節)。鑒于這一領域的快速發展,我們確定并討論了一些可能指導未來研究的潛在開放問題(第5節)。在結束這一系統綜述時,我們倡導通過開發更公正、更穩健、更專業和統一的基于LLM的評估者來推動這一領域的發展。此外,我們強調整合其他評估方法,如人類判斷,以實現更全面和多面的評估框架。
在大型語言模型(LLMs)迅速發展的背景下,越來越多的研究將重點放在利用這些模型作為NLG任務的評估者。這種關注特別源于LLMs的高容量生成能力,導致出現了使用它們來對NLG文本進行質量評估的工作——我們將這種范式稱為生成性評估。這一類別大致分為基于提示的評估和基于微調的評估,其核心在于LLM評估者的參數是否需要微調。基于提示的評估通常涉及使用精心設計的提示指導強大的基礎LLMs來評估生成的文本。另一方面,基于微調的評估依賴于專門為NLG評估校準的開源LLMs。這兩種方法都適用于不同的評估協議,用于衡量生成文本的質量。
當前方法考慮不同的評分協議來判斷生成假設文本的質量。一些嘗試部署LLM評估者產生連續的標量分數,代表單個生成文本的質量——稱為? 基于分數的評估。其他方法計算基于提示、來源或參考文本(可選)的生成文本的生成概率作為評估指標,稱為? 基于概率的評估。在多樣化的領域中,某些工作將NLG評估轉化為分類任務,使用類似李克特量表的多級別對文本質量進行分類。在這種情況下,LLM評估者通過將生成的文本分配到特定的質量級別來評估其質量——稱為? 李克特風格評估。同時,? 成對比較方法涉及使用LLM評估者比較一對生成文本的質量。此外,? 組合評估方法利用多個不同LLMs或提示的LLM評估者,協調評估者之間的溝通以產生最終評估結果。最后,一些最新的研究探索了? 高級評估方法(考慮細粒度標準或結合連續思考或上下文學習的能力),旨在獲得更全面和細致的評估結果。
本節深入探討了這兩個主要類別的評估方法,每種方法都伴隨其相應的評估協議。表2提供了當前基于提示和基于微調評估方法的全面概述。該表詳細說明了它們各自的適應任務、基礎模型、評分協議和評估方面,以便于清晰參考。
基于LLM的評估者已在多種NLG任務中找到應用。與此同時,眾多現有和近期引入的元評估基準用于驗證這些評估者的有效性。這些基準包括了對生成文本質量的人類注釋,以及評估自動評估者和人類偏好之間一致性的程度。根據涉及的任務,這些基準可以被分類為單一場景示例,如機器翻譯和摘要,以及多場景基準。本節將提供這些NLG任務及其相關元評估基準的概述。
結論
在本綜述中,我們詳盡地調查了LLMs在NLG評估中的作用。我們全面的分類體系按三個主要維度對作品進行分類:評估功能、評估參考和評估任務。這個框架使我們能夠系統地分類和理解基于LLM的評估方法論。我們深入探討了各種基于LLM的方法,審視它們的優勢并比較它們的差異。此外,我們總結了NLG評估的普遍元評估基準。
在我們的研究中,我們強調了這一快速發展領域的進步和現存挑戰。盡管LLMs在評估NLG輸出方面提供了開創性的潛力,但仍有一些未解決的問題需要關注,包括偏見、穩健性、混合評估方法的整合,以及LLM評估者內部對特定領域和統一評估的需求。我們預計,解決這些挑戰將為更通用、有效和可靠的NLG評估技術鋪平道路。這樣的進步將顯著促進NLG評估的發展以及LLMs的更廣泛應用。
現代人工智能為產生不同風格的數字藝術提供了一種新穎的方式。神經網絡的表達能力使得視覺風格轉移方法成為可能,這些方法可以用來編輯圖像、視頻和3D數據,使它們更具藝術性和多樣性。本文報道了3D數據神經風格化的最新進展。我們提供了一種神經風格化的分類法,考慮了幾個重要的設計選擇,包括場景表示、指導數據、優化策略和輸出風格。基于這種分類法,我們的綜述首先回顧了2D圖像神經風格化的背景,然后對3D數據的最新神經風格化方法進行了深入討論,并提供了一個關于藝術風格化方法的小型基準測試。基于綜述中獲得的洞見,我們接著討論了開放性挑戰、未來研究,以及神經風格化的潛在應用和影響。
//www.zhuanzhi.ai/paper/d5ea0c58d303f46ebcf7e8cc629aa08c
數字藝術和視覺設計在我們的日常生活空間中盛行,表達了視覺上引人入勝的美學、獨特的品味和人類的情感。隨著計算硬件的最新進展,使用計算工具或算法創作高質量的數字藝術越來越受到公眾關注。人工智能(AI)技術的出現進一步推動了這一計算設計過程,并顯示出加速或自動化創作數字藝術的強大潛力。最近出現的視覺合成和編輯AI產品,如LUMA AI [Lum23]、DALL·E 3 [Ope23]、Midjourney [Mid23] 和 RunwayML [Run23] 已成功展示了它們加速高質量視覺設計和生成的能力。
本報告深入探討了利用AI創作3D數字藝術的最新進展,特別是通過風格化。一個典型的3D場景風格化涉及編輯場景幾何和/或外觀以匹配某些指定的藝術風格。風格化可以通過現代深度學習中的神經網絡實現,因此稱為神經風格化。放在傳統計算機圖形管線的背景下,3D神經風格化可以被視為傳統渲染管線的替代品,使用可編程著色器用于風格化的后處理。因此,3D神經風格化有助于減少在風格化3D場景中的勞動密集型手工工作,包括3D建模、紋理化、渲染或模擬。3D神經風格化因此對于各種工業應用具有實際價值,包括電影制作中的3D紋理設計和藝術模擬 [NR21,KAOT23,HHK?23],混合現實體驗 [THC?22, Tan19](圖2),逼真的視覺特效(VFX)和虛擬制作 [Man23],藝術品創作 [GC22] 以及視頻游戲開發 [OBW22,MLS?22]。從2D神經風格化擴展到3D,使用傳統3D表示和渲染進行的3D神經風格化通常面臨視角一致性和逼真渲染問題。多虧了神經渲染技術的進步,對于不同3D表示(包括網格、體積、點云和神經場)的3D神經風格化取得了高質量結果的顯著改進。它也適用于各種3D場景,從小型物體場景到大型野外場景,甚至應用于工業生產 [HHK?23]。
在本報告中,我們涵蓋了3D神經風格化領域的風格化基礎、最新進展、現有挑戰和未來研究方向。我們從神經風格化的基本技術(第2節)開始,包括2D視覺風格轉移算法和3D神經渲染。在第3節中,我們介紹了神經風格化的分類法,并為3D神經風格化的最新技術提供了分類。使用這種分類法,我們深入討論了先進的3D神經風格化方法,并提出了我們對3D風格化最近困難的分析。在第4節中,我們總結了3D風格化評估中常用的數據集。我們還提供了一個小型基準測試,作為評估最新3D風格化算法性能的標準。最后,在第5節中,我們討論了開放的挑戰和未來的研究方向。我們將隨報告發布我們的評估代碼和其他實施資源。
本報告的范圍專注于應用于3D場景的神經風格轉移。目標是探索基于深度學習的技術和方法,這些技術和方法能夠自動將藝術或逼真風格和語義特征轉移到3D數字世界中。盡管承認專用于風格化的3D訓練數據集的稀缺性和挑戰,本報告旨在突出現成的大型數據模型驅動的圖像引導和文本引導神經風格化的潛力,以實現視覺上吸引人的3D風格化結果。神經風格化基礎在神經風格化的基礎上,視覺風格轉移指的是編輯場景的紋理或顏色以匹配由參考圖像定義的風格,同時保持整體場景結構不變。在這一節中,我們首先提供2D神經風格化的概覽作為基礎。我們重點關注圖像引導和文本引導的風格轉移,因為它們是兩種主要的風格化方法,分別通過一張圖片或一段文字來指示目標風格參考。我們從使用經典特征提取器(如VGG分類器和CLIP編碼器)的簡單方法開始討論基礎知識。我們還根據它們的優化方法對這些2D神經風格轉移技術進行分類。最后,我們簡要介紹神經輻射場的基礎知識,這是一種重要的3D神經表示形式,在第3節中將深入討論3D神經風格化。我們參考了[JYF?19,SJJ?21,ZYW?23]中關于條件圖像合成和風格化的更多討論,以及[TTM?22,XTS?22]中關于場景表示和神經渲染的更多討論。
3D神經風格化
3D神經風格化指的是將神經風格化技術應用于修改現有3D數字表示的視覺外觀和美學特征。這個過程涉及利用神經網絡及相關風格化算法來操縱顏色、紋理、形狀等3D模型的視覺和幾何屬性。3D神經風格化促進了3D數字內容的視覺風格化自動生成,為計算機圖形學領域的創意表達和視覺設計提供了新的途徑。為了將3D表示與新風格融合,需要考慮兩個重要因素:3D幾何保留和風格轉換。與視覺風格轉移類似,我們關注基于圖像和文本的3D神經風格化方法。大多數方法依賴現有的大型預訓練模型(例如VGG和CLIP)進行零樣本特征提取,并且不需要任何額外的3D數據預訓練。與3D數據上的預訓練3D特征提取器相比(例如體素[WSK?15]、網格[MBBV15]、點云[QSMG17, ZJJ?21]),圖像和文本預訓練模型是廣泛可訪問的,它們以多級視覺模式和語義特征提取而聞名。在這一節中,我們首先引入神經風格化的分類法,并給出現有3D神經風格化方法的分類示例。在后續章節中,我們將介紹最先進的3D神經風格化技術,涵蓋了如網格、體積數據、點云和隱式場等多種3D表示,重點關注外觀和/或幾何風格化的轉變。最后,我們將深入總結和分析3D神經風格化的技術。
分類法 我們從2D對應物擴展了3D神經風格化的術語。3D神經風格化方法的分類法如圖9所示,詳細內容如下。
表示形式可以是顯式圖像或隱式2D場,構建的3D資產如網格、體積模擬、多視圖3D重建(如重建的網格),以及隱式3D場。
神經風格特征指的是來自預訓練特征提取器的圖像視覺嵌入或文本語義嵌入,通常是神經分類器。
優化指的是基于優化的(類似于第2.1節)或基于預測的風格化方法(類似于第2.2節),支持單一、多個或任意風格。
風格化類型指的是不同類型的風格化,從從藝術作品中檢索的風格(例如圖1中的梵高星夜雕塑場景),到逼真風格(包括傳統基于顏色的風格轉移和逼真的幾何與外觀變化,例如圖1中的“燃燒的松果”),再到具有風格語義對應的語義風格轉移,使用顯式標簽或掩碼,或隱式文本或視覺語義定位和映射。我們進一步將方法分類為幾何風格化和外觀風格化,其中幾何風格化指的是變換原始形狀以對齊風格參考,如改變頂點、體素的位置,外觀風格化指的是重新著色、圖案和圖騰轉移,如圖像像素、紋理映射、頂點顏色、點顏色和輻射場。 圖10展示了3D神經風格化方法的層次分類。表1詳細突出了基于我們在圖9中提出的分類法標準的選定3D風格化方法的分類和比較。
結論
本最新報告探討了3D神經風格化的進展,特別是針對3D數據的圖像引導和文本引導神經風格化技術。通過對最新3D神經風格化技術及其相應應用的全面綜述,我們強調了神經風格化在加速創造過程、實現風格化的細粒度控制、以及在電影制作、虛擬制作和視頻游戲開發等多個領域增強藝術表達的重要性。此外,我們介紹了神經風格化的分類法,為神經風格化領域的新作品提供了一個分類框架。我們對先進技術的分析和討論強調了持續的研究努力,旨在解決限制并推動3D數字領域神經風格化的邊界。最后,我們提出了一個3D藝術風格化的小型基準測試,我們的目標是為其他3D風格化作品提供靈感和評估標準。
**本文回顧了在擴散模型在廣泛的生成任務中流行的背景下的文本到圖像的擴散模型。作為一項獨立的工作,本綜述首先簡要介紹基本擴散模型如何用于圖像合成,然后介紹條件或指導如何改善學習。**在此基礎上,綜述了文本條件圖像合成(即文本到圖像)的最新方法。本文進一步總結了文本到圖像生成之外的應用:文本指導的創意生成和文本指導的圖像編輯。除了迄今取得的進展,本文還討論了現有的挑戰和有希望的未來方向。
//www.zhuanzhi.ai/paper/8a64d962c13c8857d5c06bcdc0c43c0a
1. 引言
一幅畫勝過千言萬語。正如一句老話所說,圖像比純文本更能講述故事。當人們閱讀文本故事時,他們可以通過想象在腦海中畫出相關的圖像,這有助于他們理解和享受更多。因此,設計一個從紋理描述生成視覺逼真圖像的自動系統,即文本到圖像任務,是一項非平凡任務,因此可以被視為類人或通用人工智能的一個重要里程碑[1],[2],[3],[4]。隨著深度學習[5]的發展,文本到圖像任務已經成為計算機視覺中最令人印象深刻的應用之一[6]、[7]、[8]、[9]、[10]、[11]、[12]、[13]、[14]、[15]、[16]、[17]、[18]。我們在圖1中總結了文本到圖像生成的代表性工作的時間軸。如圖1所示,AlignDRAW[6]是一項從自然語言生成圖像的開創性工作,但受到了不現實的結果的影響。文本條件GAN[7]是第一個從字符級到像素級的端到端差分架構。不同于基于GAN的方法[7]、[8]、[9]、[10]主要在小規模數據環境下進行,自回歸方法[11]、[12]、[13]、[14]利用大規模數據進行文本到圖像生成,代表性方法包括OpenAI的DALL-E[11]和谷歌的Parti[14]。然而,自回歸特性使得這些方法[11],[12],[13],[14]存在較高的計算成本和序列誤差累積。
最近,擴散模型(DM)出現了成為文本到圖像生成中最先進的新模型的趨勢[15],[16],[17],[18]。基于擴散的文本到圖像合成也在社交媒體上引起了廣泛關注。在過去的一年里,大量關于文本到圖像擴散模型的工作已經出現,但更多的工作預計將在不久的將來出現。相關著作的數量使讀者在沒有全面調研的情況下,了解文本-圖像擴散模型的最新發展越來越具有挑戰性。然而,據我們所知,目前還沒有關于基于擴散的文本到圖像生成的最新進展的綜述工作。相關綜述的一個分支[19],[20],[21],[22]綜述了擴散模型在所有領域的進展,使其局限于對測試到圖像合成任務的有限覆蓋。另一個綜述流[21],[23],[24]專注于文本到圖像任務,但僅限于基于GAN的方法,考慮到擴散模型取代GAN的最近趨勢,這些方法有些過時。本文通過全面介紹基于擴散模型的文本到圖像任務的最新進展,并對其未來方向進行了展望,填補了上述兩個流之間的空白。 **該綜述首先回顧了基于擴散模型的文本到圖像任務的最新進展,因此處于擴散模型和文本到圖像合成的交叉點。**因此,我們將本文的其余部分組織如下。第二節介紹了擴散模型的背景,包括對文本到圖像合成很重要的指導方法。第三部分討論了基于擴散模型的文本生成圖像任務的開創性工作,包括GLIDE[15]、Imagen[16]、Stable diffusion[17]和DALL-E2[18]。第四部分從各個方面進一步論述了后續研究對第三部分開拓性工作的完善。通過總結最近的基準和分析,在第5節中從技術和道德角度進一步評估這些文本到圖像的方法。除了文本到圖像的生成外,還介紹了第六節中的相關任務,包括文本指導的創意生成(如文本到視頻)和文本指導的圖像編輯。回顧了文本到圖像生成之外的各種應用,并討論了挑戰和未來的機會。 2. 開創性的文本到圖像擴散模型
本節介紹基于擴散模型的文本到圖像的前沿框架,根據擴散先驗在哪里進行,可以大致分類,即像素空間或潛空間。第一類方法直接從高維像素級生成圖像,包括GLIDE[15]和Imagen[16]。另一組工作建議首先將圖像壓縮到一個低維空間,然后在這個潛空間上訓練擴散模型。潛空間類的代表性方法有Stable Diffusion[17]、VQ-diffusion[39]和DALL-E 2[18]。 像素空間中的框架
GLIDE:關于DM的第一個T2I工作。本質上,文本到圖像是以文本為條件的圖像合成。因此,將類條件DM中的標簽替換為文本,使采樣生成以文本為條件是很直觀的。正如在2.3節中討論的,引導擴散提高了條件DM中樣本[37]的真實感,其無分類器變體[38]有助于處理自由形式的提示。受此啟發,GLIDE[15]在T2I中采用無分類器指導,將原始類別標簽替換為文本。GLIDE[15]還調查了剪輯指導,但與無分類器指導相比,人類評估人員不太喜歡樣本的照片真實感和標題相似性。作為其框架中的一個重要組件,文本編碼器被設置為一個transformer[40],具有24個殘差塊,寬度為2048(大約1.2B參數)。實驗結果表明,GLIDE[15]在FID和人工評價指標上均優于DALL-E [11]。
Imagen:用預訓練語言模型編碼文本。
繼GLIDE[15]之后,Imagen[16]采用無分類器指導的圖像生成。GLIDE和Imagen的核心區別在于它們對文本編碼器的選擇。具體來說,GLIDE使用成對的圖像-文本數據與擴散先驗一起訓練文本編碼器,而Imagen[16]采用預訓練和凍結的大型語言模型作為文本編碼器。凍結預訓練編碼器的權重有助于離線文本嵌入,這為文本到圖像擴散先驗的在線訓練減少了可忽略不計的計算負擔。此外,文本編碼器可以在圖像-文本數據(如CLIP[41])或純文本語料庫(如BERT [42], GPT[43],[44],[45]和T5[46])上進行預訓練。純文本語料庫明顯大于成對的圖像-文本數據,使這些大型語言模型接觸到分布豐富而廣泛的文本。例如,BERT[42]中使用的純文本語料庫約為20GB, T5[46]中使用的純文本語料庫約為800GB。以不同的T5[46]變體作為文本編碼器,[16]揭示了在Imagen中增加語言模型的大小比擴大擴散模型的大小更能提高圖像保真度和圖文對齊。
隱空間框架
穩定擴散:潛空間的里程碑式研究。在隱空間上訓練擴散模型的代表性框架是穩定擴散,它是隱擴散模型(LDM)[17]的擴展版本。繼Dall-E[11]采用VQ-VAE學習視覺碼本之后,穩定擴散在第一階段使用VQ-GAN[47]進行潛表示。值得注意的是,VQ-GAN通過添加對抗性目標來改進VQ-VAE,以增加合成圖像的自然度。使用預訓練的VAE,穩定擴散逆轉了用噪聲擾動潛空間的前向擴散過程。穩定擴散還引入了交叉注意力,作為各種條件信號(如文本)的通用調節。在[17]上的實驗結果表明,在隱空間上進行擴散建模在降低復雜度和保持細節方面明顯優于在像素空間上進行擴散建模。在VQ-diffusion[39]中,采用先掩碼再替換的擴散策略,也實現了類似的擴散算法。與像素空間方法的發現類似,無分類器指導也顯著改善了隱空間[17]、[48]中的文本到圖像擴散模型。
3. 文本到圖像擴散模型的改進
3.1改進模型架構
關于指導的選擇。在無分類器指導的基礎上,[15]、[57]、[58]等工作也利用CLIP[41]探索了跨模態指導。具體來說,GLIDE[15]發現CLIP-guidance的表現低于無分類器指導的變體。相比之下,另一項修復[59]的工作指出,缺乏大規模的transformer語言模型,使得這些具有CLIP指導的模型難以編碼文本提示和生成具有細節的復雜場景。通過結合大型語言模型和跨模態匹配模型,修復[59]顯著提高了生成圖像的樣本保真度和圖像-文本對齊。通用的圖像合成能力使修復[59]可以在簡單和復雜的場景中生成圖像。 3.2 空間控制示意圖
盡管它們具有前所未有的高圖像保真度和標題相似性,但大多數文本到圖像的DMs,如Imagen[16]和DALL-E2[18],并不提供對空間布局的細粒度控制。為此,SpaText[62]引入了空間文本(ST)表示,可以通過調整SOTA DM的解碼器對其進行微調。具體來說,新的編碼器同時滿足局部ST和現有的全局文本。因此,SpaText[62]的核心在于ST,其中的擴散先驗單獨訓練,以將CLIP中的圖像嵌入轉換為其文本嵌入。在訓練過程中,通過使用CLIP圖像編碼器將分割后的圖像對象作為輸入直接生成ST。并發工作[63]提出通過簡單的草圖圖像實現細粒度的局部控制。他們的方法的核心是一個潛在引導預測器(LGP),這是一個像素級MLP,將噪聲圖像的潛在特征映射到相應的草圖輸入。經過訓練后(請參閱[63]了解更多訓練細節),LGP可以部署到預訓練的文本到圖像DM,而不需要進行微調。
3.3 面向概念控制的文本反轉
文本到圖像生成的先驅工作[15],[16],[17],[18]依靠自然語言來描述生成圖像的內容和風格。然而,在某些情況下,文本不能準確地描述用戶想要的語義,例如生成一個新的主題。為了合成具有特定概念或主題的新場景,[64],[65]引入了一些具有所需概念的參考圖像,然后將參考圖像翻轉為文本描述。具體來說,[64]將幾個參考圖像中的共享概念翻轉到文本(嵌入)空間,即“偽詞”。生成的“偽詞”可用于個性化生成。DreamBooth[65]采用了類似的技術,主要區別在于對預訓練DM模型進行微調(而不是凍結),以保留主題身份的關鍵視覺特征。
3.4 分布外檢索
SOTA文本到圖像模型令人印象深刻的性能是基于這樣的假設:該模型很好地暴露了以訓練風格描述公共實體的文本。然而,當實體很少見,或者期望的風格與訓練風格有很大不同時,這種假設就不成立了。為了緩解分布外性能的顯著下降,多個工作[66]、[67]、[68]、[69]都使用了將外部數據庫作為內存進行檢索的技術。這種技術首先在NLP[70],[71],[72],[73],[74]和最近在基于GAN的圖像合成[75]中獲得了關注,通過將全參數模型轉換為半參數模型。受此啟發,[66]增強了具有檢索的擴散模型。檢索增強擴散模型(RDM)[66]由條件DM和圖像數據庫組成,圖像數據庫被解釋為模型的顯式部分。通過在CLIP中測量距離,為每個查詢查詢k近鄰,即訓練樣本,在外部數據庫中,擴散先驗由具有固定CLIP圖像編碼器的KNN近鄰的更有信息的嵌入來指導,而不是文本嵌入。KNN-diffusion[67]采用了一種基本相似的方法,主要不同之處在于使擴散先驗地附加在文本嵌入上,以提高生成的樣本質量。后續的Re-Imagen[69]也采用了這種做法。與兩階段框架的RDM[66]和KNN-diffusion[67]相比,Re-Imagen[69]采用單階段框架,選擇與潛空間距離不相關的K-NN近鄰。此外,Re-Imagen還允許檢索到的鄰居既是圖像又是文本。如[69]所述,Re-Imagen在基準COCO數據集上的性能比KNN-diffusion有很大的優勢。