在與美陸軍分析小組及其研究促進實驗室進行CRADA的過程中,Entanglement, Inc.(EI)已經展示了比任何已知技術更快、更準確的網絡安全異常檢測能力--假陽性現象少得多。
全球大多數網絡安全報告(包括2022年Sonicwall報告)認為,2021年幾乎所有類型的網絡攻擊都大幅上升,包括zeroday和勒索軟件攻擊。所有這些攻擊都有一個共同點:網絡異常。網絡安全中的異常檢測是指識別罕見的發生、項目或事件,由于其特征與大多數處理的數據不同而引起關注,這使得組織能夠跟蹤安全錯誤、結構缺陷甚至欺詐。異常檢測的三種主要形式是:無監督的、有監督的和半監督的。安全運營中心(SOC)分析師在網絡安全應用中使用這些方法中的每一種,都有不同程度的有效性。局限于監督式機器學習的系統往往會標出許多潛在的異常現象,以至于分析員不得不與無休止地增長的假陽性警報作斗爭,遭受認知過載。
過多的登錄,兩點之間的流量高峰,以及異常大量的遠程登錄是異常的幾個例子。正如我們在2020年的大流行病應對中所了解到的,后一種 "異常 "對于許多組織來說是必要的,以便在工人被困在家里時保持業務運轉。鑒于COVID-19大流行期間遠程工作的規模所帶來的挑戰,以及2021年網絡威脅的增加,美國陸軍轉向私營部門,探索一系列可能的解決方案。
2021年5月,拜登發布了一項行政命令,授權所有聯邦機構采用零信任安全。2021年第三季度,提出了一種新的網絡安全方法,以解決最近授權的零信任安全架構的持續監測部分。如果成功的話,這種能力可以應用于軍隊和其他聯邦機構運營的更大的網絡,并幫助提供實時態勢感知。這部分是基于對深度神經網絡的研究,其目標是:(a)加速自動編碼器(AE)功能;(b)加速生成對抗網絡(GAN)功能;以及(c)整合一種叫做支持向量機(SVM)的量子啟發優化算法。該方法包括二次無約束二元優化(QUBO)在網絡安全異常和離群點檢測方面的新應用,是由美國政府委托的。在業務轉型辦公室的指導下,陸軍分析小組(AAG)立即開始與可能被用于擊敗網絡異常威脅的新興技術的廣泛潛在來源合作。2021年6月,AAG的主任丹-詹森先生了解到Entanglement公司的無償援助提議,該公司選擇了其戰略伙伴和團隊參與者美國半導體公司Groq公司,為陸軍提供新穎、突破性的專利技術以及計算服務。
Entanglement團隊提供服務,協助陸軍在12個月內確定一個最佳的網絡安全異常檢測能力。2021年6月,AAG和Entanglement延長了題為 "COVID-19資源分配優化 "的現有合作研究與開發協議(CRADA)。Entanglement團隊在接下來的幾周內與Clay Stanek博士領導的AAG研究促進實驗室一起工作,并在2021年10月展示了顯著的性能改進和可行性。
CRADA下的工作最終驗證了解決網絡安全異常檢測的能力,比傳統方法更快,并具有更好的性能,正如關鍵性能參數(KPP)所衡量。關鍵性能參數涵蓋了與每秒總推斷量、檢測到的威脅百分比、準確性、召回率、精確度、其他基于混淆矩陣的指標以及曲線下面積(AUC)有關的指標。
對于額外的變量或更大的數據集,Entanglement/Groq能力提供了比傳統方法更高的效率,可以大規模地解決原本難以解決的問題。核心技術是一種專有的專用數字電路設計,具有高度的并行性,用于解決可表示為深度神經網絡模型和二次無約束二元優化(QUBO)問題的各類問題。AAG以前的努力顯示了每秒檢測12萬個推斷的能力。這是用QUBO模型作為基準和標準所能達到的指標。基準是基于一個解決方案集,它將算法解決方案與專有的量子啟發芯片結合起來。芯片解決方案可以擴展到卡、節點,甚至更多。此外,為CRADA的可行性而設定基準的現有解決方案已經在開發下一代的更新,這將提高模塊化程度并減少熱信號。
在六個月內,Entanglement能夠實現每秒72,000,000次推斷的異常檢測率,并展示了在廣泛的數據處理系統領域實現每秒120,000,000次推斷的潛力。
驗證案例由KDD Cup 1999(KDD99)數據集和CICIDS2017數據集構建。如模型性能部分所述,AE和GAN解決方案的計算輸出在確定異常情況方面非常有效。QUBO SVM是以量子化形式建立的,在異常檢測方面也很有效,最后能夠在大約250毫秒內完成整個數據集的計算。
建立和保持共同的態勢感知是團隊伙伴所面臨的最困難的認知活動之一。它也是團隊和協作工作中最脆弱的領域之一。 在個人和集體層面上,表述是認知決策過程的核心。 對情況的共同理解,即團隊成員之間的類似,對于決策的連貫性是必要的。
態勢感知(SA)及其共享對背景影響特別敏感,有必要提供所有必要的技術支持,既要為其提供便利,又要保證其在管理潛在錯誤方面的安全性。
這種伙伴關系可以成為認知戰的目標。對攻擊者來說,這是一個通過利用所有分享工具(無論是技術還是社會工具)來影響個人表述的問題。 面對影響或操縱的威脅,防御者必須處理這種風險,并促進強有力的態勢感知共享的條件。
網絡空間是支持戰場物聯網(IoBT)的數字通信網絡,是以防御為中心的傳感器、計算機、執行器和人類以數字方式連接的模式。一個安全的IoBT基礎設施有助于在分布式子系統中實時實施觀察、定位、決定、行動(OODA)循環。網絡犯罪分子和戰略對手的成功黑客行為表明,像IoBT這樣的網絡系統并不安全。三條工作路線展示了一條通往更強大的IoBT的道路。首先,收集了企業網絡流量的基線數據集,并通過生成方法對其進行建模,允許生成真實的、合成的網絡數據。接下來,通過算法制作了網絡數據包的對抗性例子,以欺騙網絡入侵檢測系統,同時保持數據包的功能。最后,提出了一個框架,使用元學習來結合各種薄弱模型的預測能力。這導致了一個元模型在數據包的整體準確性和對抗性實例檢測率方面優于所有基線分類器。國防戰略強調網絡安全是保衛國土和在信息時代保持軍事優勢的必要條件。這項研究提供了學術觀點和應用技術,以推進美國防部在信息時代的網絡安全態勢。
圖 22. 對抗性樣本的生成和測試的4個步驟
圖23. 元學習框架通過智能地結合每個基礎模型的預測能力來加強對對抗性攻擊。對抗性訓練的分類器是通過5.3所述的增強數據集進行訓練。
美國國防部(DoD)預計,未來的戰爭將主要在網絡領域進行,對手包括戰略競爭對手和非國家行為者。由于美國從未打過一場全面的網絡戰爭,因此對 "路線規則"并不十分了解[6]。敵人有可能通過已知和未知的威脅載體來攻擊美國的利益。這些攻擊的影響可能是非動能性的,即對信息系統的未獲許可的訪問或控制,或者是動能性的,即攻擊導致物理資產的破壞、基礎設施的損害或死亡。許多遺留的網絡物理系統在建造時沒有預見到網絡漏洞[7]。隨著戰場物聯網的發展,包括更多的這些系統,潛在的網絡威脅暴露也在增加。想象一下,當士兵的可穿戴設備在戰斗中因網絡攻擊而發生故障時,會出現怎樣的混亂。至關重要的是,我們要在對手利用這些缺點之前,用新技術解決我們軍隊的網絡安全問題。生成式機器學習和元學習是新興領域,可能為網絡安全研究中一些長期存在的障礙提供解決方案。
入侵檢測系統(IDS)是一種阻止和防御網絡攻擊的方法[7]。不幸的是,IDS需要大量的數據集進行訓練[2]。有機的網絡攻擊數據,帶有標記的條目,是出了名的稀缺。NSL-KDD[8]試圖糾正被廣泛引用的KDD-CUP基準數據集的問題,然而,即使是改進的版本也是過時的,而且范圍有限。
生成式機器學習是人工智能的一個領域,有可能以新的方式解決未解決的問題。諸如馬爾科夫鏈蒙特卡洛、自動編碼器和生成對抗網絡(GANS)和自動編碼器的方法被用來估計未知的概率分布函數。對多樣化和現實的生成數據的應用是很迫切的,特別是對網絡。生成方法提供了一個分析和綜合網絡數據的途徑,而生成方法與元學習的結合提供了一個防止某些網絡攻擊的機會。
本章的其余部分介紹了三個促進美國網絡系統安全的研究課題。第2章提供了一個相關主題的總體文獻回顧,以及一個精心挑選的可能對讀者特別有價值的來源的快速參考表。第3至5章提供了與貢獻1、2和3相對應的已完成的研究手稿。以前發表的研究是第六章,最后總結了研究的主要發現以及它們對現代防御的影響。附錄提供了不適合于主文件的額外信息。附錄A是元學習NIDS的相關研究,不適合于所述貢獻。附錄B是一個參考的AFIT論文表。附錄C包括支持貢獻1的數據表格。
本論文提出了三個研究課題以支持軍隊安全態勢的現代化。雖然每個課題都可以獨立進行,但本論文采取了連續的方法,早期研究的結果增強了后來的工作。本論文的總體目標是證明在建立一個對對抗性攻擊具有強大抵抗力的入侵檢測系統方面取得了重大進展。
貢獻1:生成真實的合成網絡數據。
第一個研究目標是對現代網絡數據的概率分布進行建模,并從基線分布中生成額外的、現實的數據。預定的生成模型可以是明確的,以概率分布函數的形式,或隱含的,如GAN。生成方法將在第2.2節討論。無論怎樣,模型生成的現實數據必須證明與基線數據的分布相匹配。與第4.2節中NSL-KDD[8]、KDD-CUP[9]、UNSW-NB15[10]等其他基準數據集不同,生成的數據必須能夠代表現代政府系統中的網絡流量,包括授權和惡意行為者的例子,而且比例適當。惡意流量必須是現代網絡攻擊的代表,并反映原始分布中未觀察到的例子。一個可能的策略是通過在敵對環境中收集的真實網絡數據或在現實的高保真模擬中收集的數據來訓練一個生成模型。然后,基線數據可以用來訓練一個生成模型,能夠從與基線相同的分布中創建新的、現實的例子。
特別是,生成模型應該強調對模式崩潰的復原力,并且應該對變量之間的宏觀層面的關聯性進行建模。如果成功,現實生成的網絡數據將被用作創建對抗性例子的起點。擴大的、生成的數據集比小的真實數據集更受歡迎,因為它展示了生成方法的可行性,以克服新型網絡攻擊中的數據不足。隨著網絡日志數據中新現象的發現,它們將被復制到更大的數量,有利于創建對抗性例子和強大的IDS。如果生成方法不能產生現實的數據,那么目標二可以使用數量更多的基線數據來實現,而這些數據的獲取是昂貴和費力的。為了支持貢獻1,已經提交并接受了兩篇存檔的同行評審論文。《網絡領域生成方法的挑戰和機遇》已被《2021年冬季模擬會議論文集》接受,《為訓練和評估網絡入侵檢測系統的機器學習分類器生成現實的網絡數據》已提交給《應用專家系統》。這兩項工作都是由Marc Chal′e(主要作者)撰寫的,委員會成員為支持學位論文研究做出了貢獻。支持貢獻1的工作在第三章和附錄C中介紹。
貢獻2:生成對抗性樣本。
第2個研究目標是產生能夠躲避現代IDS的對抗性樣本。對抗性樣本必須使用新的技術來創建,包括適用的生成方法。對抗性樣本必須超越諸如[11]的工作,強制執行網絡數據的不可變方面[12],并實現端到端的攻擊。解決這一挑戰可能會增加最先進的網絡攻擊對當前IDS的有效性,但一旦這些技術被確定,它們就可以在強大的IDS中得到解決。盡管最近在計算機視覺領域創造對抗性攻擊方面取得了進展,但在網絡領域產生對抗性攻擊是特別具有挑戰性的[12]。為了使被擾亂的互聯網協議(IP)數據包能夠促進端到端的網絡攻擊,數據包必須保持其專門的數據結構以及執行時的原始功能。雖然圖像可以不受限制地被擾動,并產生一個有效的圖像文件,但在互聯網上傳輸的IP數據包在擾動過程中會被破壞,導致無效的端到端攻擊。盡管最初對網絡領域的對抗性攻擊的研究[11] [13] [14]集中在擾亂網絡數據的特征向量上,但更困難的任務是擾亂網絡數據包的實際有效載荷,同時保持其原始功能[13] [15] [12]。或者,可以生成一個對抗性的特征向量,然后反向設計成一個能躲避IDS的功能性IP數據包。在努力實現端到端黑盒攻擊的過程中,我們必須證明對抗性例子可以被限制在網絡領域的標準內。這一目標在提交給《計算機與工業工程》的期刊文章《基于約束優化的網絡入侵檢測系統轉移攻擊的對抗性實例生成》中實現。 這項工作是由Marc Chal′e(主要作者)撰寫的,委員會成員為支持論文研究做出了貢獻。支持貢獻2的工作在第四章和附錄D中介紹。
貢獻3:展示一個強大的入侵檢測系統。
入侵檢測系統在保護網絡系統數據的保密性、完整性和可用性方面發揮著重要作用,但它們存在根本性的缺陷。幾種流行的基于規則的IDS對惡意軟件的檢測率在實踐中是驚人的低。一項研究發現,Zeek使用其基于規則的警報系統只檢測到52%的惡意軟件攻擊[16]。這種乏善可陳的表現可能促使了機器學習入侵檢測系統的最新發展。雖然近年來IDS的能力有所提高,但對手也在不斷創新他們的方法。此外,自2005年以來,美國報告的入侵事件的比率一直在增加。大多數IDS漏洞被認為是規避攻擊的結果,其中IP數據包被修改為看似無害,但實際上是有害的[17]。在現代,諸如[11]這樣的規避攻擊使用啟發式方法來擾亂IP數據包的特征,騙過IDS。
因此,最終的研究目標是利用GML和元學習等技術,提高基于機器學習的IDS的分類性能和魯棒性,如[2]。通過分類性能,我們特別指出了召回率(檢測率)和準確率的指標。穩健性是指算法對來自于與訓練所用的例子不同的分布的例子有很好的概括傾向[18];它是當今網絡環境中模型的一個越來越重要的特征。
雖然貢獻2暴露了基于ML的IDS的安全漏洞,但貢獻3提供了一個解決方案。這一研究目標在MADFACTS中實現。MADFACTS: Meta-learning Augmented Defense For Adversarial Cyber Techniques是一篇已完成的長篇文章,正等待提交給《計算機與安全》、《未來互聯網》或《優化通訊》等刊物。這項工作是由Marc Chal′e(主要作者)撰寫的,委員會成員為支持論文研究做出了貢獻。支持貢獻3的工作將在第四章介紹。
影響。
上述研究目標對物聯網的網絡防御和整個國家安全有協同的影響。貢獻1旨在解決網絡領域長期缺乏標記的高質量訓練數據的問題。貢獻2提供了一個技術優勢,以對抗那些希望開發針對物聯網的新型對抗性攻擊的網絡犯罪分子和對手。貢獻1和貢獻2的成功加強了貢獻3的工作,其中一個強大的IDS擊敗了對手的例子。這些成就符合軍事戰略的更大愿景,即在所有領域(包括網絡、空間、陸地、空中和海上)實現機動性自由。加強整個IoBT的網絡安全對于指揮官在現代跨域戰爭中造成預期的影響是必不可少的,因為指揮、控制、情報和識別是決策的骨干,而且越來越數字化了。這項研究提供了一條有希望的途徑,以提高對抗不斷變化的攻擊威脅的穩健性。
美五角大樓2023財政年度(FY)的預算準備繼續保持自2016年以來美國國防開支上升的總體趨勢。如果國會將2023財年的預算增加到拜登政府要求的7730億美元以上(似乎越來越有可能),那么美國防部(DoD)的支出將在過去八個財政年度中的七個財政年度中按實際價值增長。這一連貫性將與冷戰后期以及伊拉克和阿富汗戰爭期間支出增長的多年一致性相當。目前的支出增長趨勢已經持續了三屆政府,四位參議院確認的國防部長,五屆國會,以及六年的《預算控制法》。在一個政治動蕩的時代,國防開支的上升趨勢代表了華盛頓決策中一個罕見的相對穩定的例子。
關于2023財政年度預算的一個核心辯論涉及決定如何處理通貨膨脹對國防部購買力的侵蝕。一些立法者建議將2023財年的預算增加到遠高于要求的水平,以對沖通貨膨脹仍然比預期嚴重的情況。在提出這些論點時,許多政策制定者回避了提出預算頂線,而是闡明了期望的實際增長水平。實際增長是指考慮到通貨膨脹后,頂線的年度百分比變化。0%的實際增長使頂線增加的百分比與預測的通貨膨脹率相同。
在通貨膨脹不穩定的時期,如今天,實際增長可能是判斷國防預算的一種混亂的方式。當通貨膨脹快速變化時,決策者往往對通貨膨脹預測的準確性有不同的展望。因此,他們對什么是 "實際 "增長也有不同的標準。一個悲觀的政策制定者認為預測低估了未來的通貨膨脹率,只有當預算增長超過預測的通貨膨脹率時,他才會認為是真實的。相比之下,一個樂觀的決策者認為預測高估了未來的通貨膨脹率,即使預算增長低于預測的通貨膨脹率,也可能認為是真實的。
今年,做出明智的預算選擇需要決策者同時考慮他們對未來通貨膨脹的展望和他們對實際增長的偏好。為了證明為什么這兩個因素都很重要,本報告制定了一個框架,根據決策者對未來通貨膨脹的展望來說明2023財年國防部預算頂線的選擇。該框架使用過去通脹預測的預測誤差來衡量當前通脹預測的潛在誤差。它表明,根據決策者的前景,提供0%的實際增長可以產生一個從7680億美元到7920億美元的五角大樓頂線,任何額外的實際增長都會加入這些數字。在最樂觀的情況下--對未來通貨膨脹的極端悲觀態度加上5%的實際增長--2023財政年度國防部的頂線將攀升至8300億美元,比政府的要求高出近600億美元。
這些范圍廣泛的說明性頂線表明,為什么決策者需要確定,即使是私下的,他們打算在今年的預算中避免或接受的潛在通貨膨脹損失的規模。鑒于今天對明天通貨膨脹的不確定性,僅靠實際增長并不能為確定國防開支提供一個適當的標準。
2022 年 10 月 11 日,美國陸軍發布了一份綜合數據計劃(ADP),這是一種全軍范圍內改進數據管理以確保陸軍成為以數據為中心的組織的方法。
該計劃是一項為期三年的工作,將改善整個陸軍的數據管理、數據治理和數據分析。作戰任務是陸軍數據計劃的當前重點。ADP 在該任務領域的成果是通過進行必要的更改來確保作戰人員的數據得到正確管理和使用,從而為作戰人員提供優勢。陸軍已經開始對數據管理能力、工具和模型進行原型設計,以實現這一目標。
陸軍首席信息官 Raj Iyer 博士說:“數據以及如何在所有梯隊中整合這些數據以實現真正快速、敏捷的決策,才是真正為陸軍提供其在未來戰爭中所需的競爭優勢的關鍵。”
數據和數據分析將為 2030 年的陸軍提供動力。士兵將需要在正確的時間和正確的地點獲得正確的數據,以便在每個梯隊做出更快、更好的決策——以超越任何對手的思維和步伐。
與早期的軍事行動相比,現在的戰爭范圍更大且范圍不斷擴大。作為聯合全域作戰的一部分,多域作戰是陸軍必須準備并贏得下一場戰斗的地方。這是一個數據豐富的環境。
每個領域都有自己的信息和數據流,一些信息來自開源情報,一些來自天基傳感器,還有一些來自網絡空間。今天的士兵和指揮官需要跨領域的綜合來主宰戰場。
ADP 概述了工作的組織并提供了總體戰略目標。它側重于中期努力,未來將被另一個更新所取代。
通過陸軍數據計劃實現這一決策優勢是陸軍的關鍵目標。
2022年10月11日,美陸軍公布了2022年陸軍云計劃,取代了2020年的計劃,并使陸軍更接近其數字化現代化的目標,以及將關鍵服務整合到整個企業的云環境。
正如2021年陸軍數字化轉型戰略和2019年陸軍現代化戰略所確認的,云是陸軍現代化的基礎。利用云的能力,陸軍將減少地面作戰人員網絡的數字足跡,并整合服務以實現多域作戰。
2022年陸軍云計劃提出了以下七個戰略目標:擴大云計算;實施零信任架構;實現安全、快速的軟件開發;加速數據驅動的決策;加強云計算操作;發展云計算勞動力;以及提供成本透明度和問責制。
"陸軍通過(企業云管理機構)建立了通過cARMY在秘密和非秘密級別廣泛采用云的基礎,"陸軍首席信息官Raj Iyer博士在談到最近在歐洲行動期間的云支持時說。"新的ACP側重于擴展和操作cARMY,通過與82空降師、第十八空降軍團、第一軍團、多域特遣部隊和其他陸軍的伙伴關系,滿足作戰人員的需求,支持實驗和演習,因為他們正在向2030年的多域部隊演進。"
該計劃提供了一個路線圖和衡量進展的指標,并將幫助陸軍實現其目標,即保持對美國近鄰對手的數字優勢,實施一個全球架構,并實現可持續的戰略目標。
在實現陸軍愿景方面已經取得了重大進展,2020年陸軍云計劃的許多核心原則仍然堅定不移。
本報告介紹了對動態數據驅動應用系統(DDDAS)異常檢測和響應的研究,以建立抗攻擊的多智能體系統。報告涵蓋了2019年1月至2021年11月期間的情況。除了之前報告中介紹的成就,我們還展示了一些關于所述策略實際執行的新結果,以及完成項目所有活動所需的最后細節。由于Covid-19大流行病,封鎖阻礙了實驗室的工作,不被允許雇用研究生研究助理,項目要求延期,并在2020年11月獲得批準。大學在2021年第二學期開放了實驗室,當時能夠雇用四個本科生研究人員。因此,所有的活動都是由這些本科生、三名研究生和兩名主要研究人員制定的。
這份最終報告的組織結構如下:
(i) 第一節總結了項目的目標和活動,到目前為止取得的進展,所需要素的購買情況,以及書面論文的清單。
(ii) 第二節介紹了一些與所制定的戰略共同的初步情況。
(iii) 第3節介紹了開發的方法和實驗結果。
(iv) 第4節提出了一種新穎的離散時間種群動力學來實現機器人的編隊。
(v) 第5節介紹了所開發的策略的發展和進一步的實際執行情況,以供測試。
(vi) 最后,第7節介紹了所開發工作的最終結論。
具有多個智能體的系統使我們能夠開發不同的策略來控制大規模的互連系統。與有單個智能體的系統相比,有多個智能體的系統可以更容易和更快地完成監視等任務。對這類系統的研究使我們能夠對動物和人類的行為進行建模,并根據這些行為設計控制策略。這種策略從基于鳥群和蜜蜂覓食的算法[1],沿網絡的分布式傳感[2],延伸到耦合振蕩器的同步[3],等等[4,5]。
進化博弈論對生物種群有重要的啟發作用,當與物理系統適當結合時,博弈論可以優化系統行為。這種理論的使用允許為不同的應用設計分布式控制器,如水系統的控制[6],或孤立的微電網的同步[3]。大多數提出的問題解決方案都采用連續時間的方法。然而,為了在一些系統上正確實施這些策略,需要有離散時間控制器。即使連續時間控制器是穩定的,離散化也可能變得不穩定。因此,必須發展理論結果以確保離散時間控制器是穩定的。
除了提到的離散化問題,控制器和系統還面臨另一個問題,因為它們很容易受到攻擊。惡意智能體可以修改系統信息以損害用戶和物理工廠。在多智能體系統中,對一個智能體的攻擊可以滲透到整個系統中,因為它向其余的智能體發送了損壞的信息。此外,攻擊者可以修改一個智能體發送給其鄰居的信息。對真實系統的一些攻擊表明,有必要開發一種自動反應來面對其影響[7, 8]。
該項目解決了上述問題,即使用離散時間群體動力學的系統控制和緩解對控制系統的攻擊。因此,本項目所取得的貢獻可以概括為以下幾點。首先,我們開發了一種策略來檢測和緩解對系統智能體之一的傳感器的攻擊。該策略減輕了對被攻擊智能體的影響,并防止攻擊通過通信網絡傳播到整個系統。第二,我們設計了一個使用新的離散時間群體動力學來優化凸函數的策略。我們開發了理論結果以確保系統的穩定性。這一新穎的發展使我們能夠設計一個控制器來實現機器人的編隊。第三,我們開發了一個基于軟件定義的網絡(SDN)的策略,以減輕對通信鏈路的攻擊。我們說明,使用SDN為網絡物理系統提供了不同的能力,以減輕智能體之間的通信攻擊。最后,我們不僅模擬,而且還在一個有多個差動驅動機器人的系統上實施了上述的一些策略,以顯示其效率。
為無人駕駛地面車輛(UGVs)設計并實現一個能夠減輕對傳感器讀數攻擊的編隊控制器。這項工作的重點是至少有三個機器人的編隊,并限于完整性和重放攻擊。
之前所說的目標可以在以下具體目標中分開:
開發一個編隊控制器,用于幾個UGV,即三到六個機器人,以及至少三個幾何編隊分布。
開發一種能夠檢測機器人傳感器異常情況(攻擊/失敗)的機制。
開發至少一種機制,能夠協調測量值和估計值,并計算控制行動所需的調整,以減輕異常情況對機器人編隊的影響。
開發一個機制的性能指數,以量化當緩解機制被添加到編隊控制器中時攻擊的影響的減少。
為了實現這些目標,我們在項目提案中陳述了以下活動:
(i) 設計和實現編隊隊長的控制器。
(ii) 設計和實現緩解對編隊領導的路徑跟蹤任務的攻擊的機制。
(iii) 選擇要探索的編隊集合,即定義每個編隊的機器人數量和幾何形狀(至少有三種情況)。
(iv) 為三個機器人系統的每個編隊中的跟隨者機器人設計和實現控制器。
(v) 開發機制,以檢測由領導者發送和/或由兩個追隨者接收的信息的異常情況(被攻擊的信息可能是不同的)。
(vi) 開發機制以減輕攻擊對編隊中兩個跟隨者機器人的影響。
(vii) 在一次專門會議上發表部分成果。該出版物將包括緩解對一個有三個機器人的編隊中的領導者和追隨者機器人的攻擊。
(viii) 設計和實現六個機器人的多智能體系統中的領導者和跟隨者的編隊控制器。
(ix) 開發機制,以檢測有六個智能體的系統中由領導者發送和/或由追隨者接收的信息的異常情況(在攻擊下可能是不同的)。
(x) 為六個智能體和不同的隊形形狀擴展緩解機制。
(xi) 定義一個性能指數,以量化受攻擊系統和包括緩解機制的受攻擊系統之間的差異。
(xii) 在專業期刊上發表最終結果。
圖1:不同移動地面機器人平臺的比較。EPFL是洛桑聯邦理工學院,USC是南加州大學。改編自[9]。
為了完成上述活動,我們已經購買了一些硬件。圖1顯示了不同研究小組制造的一些機器人的主要特征。盡管有些機器人如Khepera IV呈現出許多功能,但這些機器人的價格很高,或者它們沒有商業化的供應。因此,我們選擇了e-puck第2版;它有足夠的功能來開發目前的工作,其價格允許我們用現有的預算購買幾個機器人。
我們總共購買了六個地面機器人,一臺高性能的和三臺中等大小的計算機。表1顯示了每個部件的不含稅成本。機器人的價格是不同的,因為它們是在不同的日期購買的。此外,為了實現機器人的分布式通信,購買了6個樹莓派,為了檢測機器人的位置,還購買了一個攝像頭。作為項目的對應方,博士生Luis Francisco C′ombita在2015年獲得Colciencias 727資助的預算中的一些資源被用來購買項目用品,以及博士生Jorge Alfredo Lopez Jimenez的一些預算資源。Colciencias是哥倫比亞相當于國家科學基金會(NSF)的機構。
表1:為項目發展所獲得的要素
機器學習(ML),從廣義上講,是一類自動優化參數以處理給定輸入并產生所需輸出的計算機算法。ML的一個經典例子是線性回歸,據此找到一條最適合(通過)一組點的線。最近的一個例子是分類任務,如用 "貓 "這樣的單字來標記一張百萬像素的圖像。
對于許多應用,ML完成了人類可以做得同樣好的任務。然而,ML在兩種情況下大放異彩:1)任務的數量巨大,例如數百萬;2)問題的維度超出了人類思維的理解。一個簡單的例子是同時實時監控成千上萬的安全攝像頭,尋找可疑的行為。也許一個ML方法可以發現異常事件,并只與人類觀察者分享這些視頻片段。更好的是,異常圖像可以被暫時貼上諸如 "1號入口處的蒙面入侵者 "之類的標簽,以幫助保安人員只關注相關的信息。
除了減少人類的負擔外,ML還可以將人類可能無法識別的復雜的相互聯系拼湊起來。例如,一個ML算法可以發現,在一百萬個銀行賬戶中,有五個賬戶的交易似乎是同步的,盡管它們沒有相互發送或接收資金,也沒有向共同的第三方發送或接收資金。
鑒于手持和固定設備的計算資源不斷增加,我們有必要想象一下,ML可以在哪些方面改變戰爭的打法。當然,ML已經對美國陸軍的科學研究產生了影響,但我們也可以很容易地想象到自主車輛和改進的監視等作戰應用。
本文件的主要目標是激勵美國陸軍和美國防部的人員思考ML可能帶來的結果,以及為實現這些結果,哪些研究投資可能是有成效的。
在ARL的許多研究項目中,機器學習目前正在被使用,或者可以被使用。我們列出了一些使用ML或可能從ML中受益的研究項目。我們列出的與ML相關的ARL研究工作絕非完整。
雖然從技術上講,機器學習自19世紀初高斯發明線性回歸以來就一直存在,但我們相信,ML的最新進展將以我們目前無法想象的方式影響軍隊。在本節中,我們概述了我們認為將得到加強的軍隊行動的許多領域,以及可能采用的ML方法的種類。
軍事情報包括信息收集和分析,因為它涉及到指揮官做出最佳決策所需的信息。由于收集的數據量越來越大,處理必須自動化。需要考慮的主要問題是數據的數量、速度、真實性和多樣性。大量的數據(又稱大數據)需要在許多計算節點上對數據進行智能分配。速度要求快速計算和網絡連接到數據流。真實性是對信息來源和異常檢測的信任問題。多樣性相當于使用許多不同的ML算法的不同訓練模型的應用。我們在本小節中概述了不同類型的數據和分析要求。
讓計算機從從各種媒體來源收集到的大型文本數據庫中提煉出重要的概念和文本部分,有很大的好處。最近報道的另一個ML突破是不同語言之間的精確文本翻譯。 軍隊的一個獨特挑戰是翻譯不常見的語言,因此專業翻譯人員較少。在人工通用智能(AGI)領域,一些團體聲稱,自然語言處理將是類似人類認知的基礎。
鑒于人類、傳感器和代理產生的數據的激增,一個很大的問題是,除了證明其收集的直接用途之外,這些數據還包含什么剩余價值。數據挖掘可以是統計學和機器學習的努力,以發現數據中的模式,否則人類操作者就會錯過。
傳統上,異常檢測是通過首先識別已知數據的群組和描述數據的分布來進行的。然后,當新的輸入被處理時,它們被識別為屬于或不屬于原始分布。如果它們在已知分布之外,就被認為是異常的。以下許多類型的異常檢測系統可能對軍隊有用。
網絡入侵檢測:超出常規的網絡流量。McPAD和PAYL是目前使用的軟件中的2個這樣的例子,它們使用了異常檢測。
生活模式異常:人們的視覺和生物統計學上的行為方式與常人不同,表明他們可能正在進行一些對抗性行動。
基于條件的維護:在當前生命周期中,材料/系統在其年齡段不典型的信號。
士兵異常:有理由相信士兵的生物識別技術不正常。
異物檢測:在已知物資數據庫中無法識別的物體的視覺效果。
自動目標識別(ATR)是一個非常成熟的領域,已經使用機器學習幾十年了。
1)目前深度學習的進展將在多大程度上增強ATR?
2)更復雜的算法是否需要更復雜/更耗電的機載計算?
ML是否能對目標的各種欺騙性的混淆行為具有魯棒性?
強化學習在多大程度上可以用來進行實時軌跡調整?
機器學習在機器人學中的應用也是一個巨大的領域。ML應用領域包括傳感、導航、運動和決策。目前,傳感將從計算機視覺的所有進展中受益。導航,除了使用標準的GPS之外,還可以從自我運動中受益,也就是基于自身感知的運動估計。運動可以被學習,而不是規劃,這不僅會導致更快的開發時間,而且還能在新的環境或受損的模式下重新適應(例如,失去四條腿中的一條)。最后,隨著機器人的數量超過人類操作員的數量,機器人將有必要自行決定如何執行其規定的任務。它將不得不做出這樣的決定:"由于電池電量不足,我是否要回到大本營?"或者 "我是否繼續前進一點,然后自我毀滅?"
除了機器人技術,人們最終希望任何系統在損壞或不能滿負荷工作時能夠自我糾正。這需要在某種程度上的智能,以自主診斷缺陷和問題,并利用其可用的資源糾正這些問題。
在通過機器學習來學習自主權的情況下,問題將是:"自主系統將如何應對X情況?" 這里的問題是,對于一個擁有潛在致命武力的系統,我們怎么能確定它只會正確合法地使用武力?我們推測,在機器學習的算法擁有使用致命武力的實際能力之前,必須對其進行廣泛的測試,即使它與人類的環形決策相聯系。
近年來,大量的研究都在研究使用機器學習來自主地玩各種視頻游戲。在某些情況下,報告的算法現在已經超過了人類玩游戲的水平。在其他情況下,仍然存在著處理長期記憶的挑戰。對于美國空軍來說,智能代理已經成功地在以戰斗為中心的飛行模擬器上進行了訓練,這些模擬器密切模仿現實生活。陸軍的問題包括以下內容。
智能代理能否附加到機器人平臺上?
智能在多大程度上可以通用于處理現實生活與視頻游戲中遇到的各種情況?
當我們可能不理解一個訓練有素的代理的邏輯時,我們能相信它的行動嗎?
代理在多大程度上能夠與人類合作?
在過去的十年里,機器學習在網絡安全方面發揮了不可或缺的作用。具體來說,ML可以用于異常檢測,檢測已知威脅的特定模式,并辨別網絡行為是否可能由惡意代理產生。隨著該領域的不斷加強,問題是ML是否能使安全比對手領先一步,因為對手可能利用ML來混淆檢測。
一個長期的設想是,軍隊使用的每一個機械系統都有一些關于系統當前和預測健康的內部感應。相關問題如下。
我們能從有限的傳感器中辨別出一個系統或系統組件的當前健康狀況嗎?
機載ML能否預測一個系統或系統部件在暴露于特定環境或彈道侮辱之后的健康狀況?
隨著基因組序列的數量繼續呈指數級增長,比較在現場獲得的序列所需的計算工作可能變得無法管理。機器學習可以通過對序列進行不同層次的分類來減少必要的比較。
93 近年來,機器學習已經在檢測各種組織中的惡性腫瘤方面取得了長足的進步。94 它同樣可以被用來描述創傷或創傷后應激障礙(PTSD)95,并制定治療計劃。
陸軍的一個重要組成部分集中在對行動、系統、研究和測試的分析上。傳統上,分析人員使用大量的工具,包括機器學習,以多維回歸、聚類和降維的形式。隨著深度學習的出現,一套新的工具應該是可能的,可以更有效地處理需要更復雜模型的大型數據集。例如,應該有可能從測試期間拍攝的視頻流中提取特征和物理屬性,這可能超過目前的標準做法。
自適應用戶界面(AUI)和情感計算。ML可以用來確定用戶的心理和/或情緒狀態,并提供適合這種狀態的界面。此外,可變的AUI可以服務于用戶的變化。例如,一些用戶可能喜歡音頻反饋而不是視覺反饋。
推薦系統。最流行的推薦系統之一是根據以前看過的電影的評分來選擇用戶想看的下一部電影(例如,所謂的 "Netflix問題")。對于軍隊來說,可以根據以前的使用情況和庫存核算的反饋來推薦后勤補給的情況。
搜索引擎/信息檢索。傳統上,搜索引擎返回文件的 "點擊率"。新的范式是以簡明的形式回答用戶的問題,而不是簡單的模式匹配。
情感分析。社交媒體上的流量和對環境進行訓練的各種傳感器不僅可以檢測關鍵的關鍵詞或特定物體的存在,還可以推斷出可能的攻擊的可能性。
有針對性的宣傳。傳統上,宣傳是通過散發傳單來完成的,如今,宣傳可以通過社交媒體來傳播。ML的角度是如何以最有說服力的信息向正確的人口群體進行宣傳。此外,重要的是快速檢測和顛覆來自對手針對我們自己的人員/人民的宣傳。
本研究的目標之一是確定當前研究中的差距,這些差距可能會限制ML在軍隊研究和行動中的全部潛力。本節借用了ARL運動科學家Brian Henz博士和Tien Pham博士(未發表)的戰略規劃工作。
傳統上,在一個特定領域采用ML的一半戰斗是弄清楚如何適應現有的工具和算法。對于陸軍所面臨的許多問題來說,這一點更為突出,與其他學術、商業或政府用途相比,這些問題可能是獨一無二的。任何數據分析員面臨的第一個問題是使數據適應他們想要使用的統計或ML模型。并非所有的數據都使用連續變量或者是一個時間序列。離散/標簽數據的管理可能非常棘手,因為標簽可能不容易被轉換成數學上的東西。在自然語言處理中的一個例子是,單詞經常被轉換為高維的單熱向量。另一個例子可能是如何將大量的維修報告轉換為對某一特定車輛在一段時間內的表現的預測。
此外,陸軍的要求超出了典型的商業部門的使用范圍,不僅需要檢測物體和人,還需要檢測他們的意圖和姿態。這將需要開發新的模型。另一個大的要求是可解釋性,正如DARPA最近的一個項目所概述的那樣:是什么因素導致ML算法做出一個特定的決定?在一個真實的事件中,如果一個ML算法在沒有人類驗證的情況下宣布一個重要目標的存在,我們能相信這一決定嗎?
隨著對計算要求高的ML任務的設想,開發人員正在使用多線程、并行和異構架構(GPU、多核)來加快計算速度。ML的分布式實現遠不如GPU版本常見,因為分布式計算中的節點間通信存在固有的網絡瓶頸,而且在單精度浮點性能方面,GPU相對于CPU有很大優勢。除了目前對GPU的強烈依賴,生物啟發式神經計算旨在尋找非馮-諾伊曼架構來更有效地執行ML,并可能更快。這方面的一個例子是IBM的神經形態芯片。97 未來的研究應該關注如何分配ML處理,使節點之間的網絡通信最小化。另外,像聚類這樣的無監督學習算法在多大程度上可以被映射到神經網絡中?
其他需要考慮的事情。
目前的ML軟件(特定的神經網絡)在一個小型的GPU集群中表現最好。
大多數基于非神經網絡的ML算法的并行性不高,或者根本就沒有并行。
另一個軍隊的具體挑戰是分析基本上沒有標記的數據集(例如,用無監督學習)。手動標注集群將是一種半監督學習的形式。
隨著進入偏遠地區或任何遠離基地的地區,軍隊必須限制系統的尺寸、重量和功率。此外,在 "激烈的戰斗 "中,時間是關鍵。例如,人們不能在遭到槍擊時等待作戰模擬的完成。最后,在其他商業發射器占主導地位的地區,或者在限制無線電通信以提高隱蔽性的情況下,網絡帶寬可能會受到很大限制。
在這種倍受限制的環境中,機器學習將需要有效地進行,而且往往是以一種孤立的方式進行。截然相反的條件是使用大型數據庫訓練大型神經網絡,這往往是最先進的機器學習功力的情況。商業部門正在開發自動駕駛汽車,據推測將使用低功耗的計算設備(如現場可編程門陣列、移動GPU)進行自主駕駛、道路/障礙物檢測和導航。然而,陸軍將有更多的要求,包括自主傳感器和執行器、態勢感知/理解、與人類的通信/合作,以及廣泛的戰場設備。這將需要多幾個因素的計算能力和特定算法的硬件,以實現最佳的小型化和低功耗。
在混亂的環境中,操作環境預計會有比通常密度更高的靜態和動態物體。此外,人們完全期待主動欺騙以避免被發現。我們也希望能夠開發出足夠強大的算法,至少能夠意識到欺騙,并相應地調低其確定性估計。
基于CNN的目標分類的突破可以部分歸功于每個物體類別的成千上萬個例子的可用性。在軍隊場景中,某些人和物體的數據可能是有限的。人們最終將需要one-hot99或multishot分類器,其中幾個有代表性的數據條目就足以學習一個新的類別。到目前為止,最好的選擇是 "知識轉移",通過調整以前訓練的模型的所有參數的子集來學習新的類別。我們的想法是,由于需要優化的參數較少,修改這些參數所需的數據也較少。
即使對于我們可以產生大量圖像的目標類別(例如,友好物體),我們也需要訓練自己的模型,以便從每個類別的潛在的數千張圖像中識別軍隊相關類別。軍隊還使用商業車輛中通常不存在的其他傳感模式(例如,熱能和雷達)。因此,需要為這些非典型的傳感設備訓練模型。從根本上說,非典型傳感設備可能需要新的神經網絡拓撲結構以達到最佳的準確性和緊湊性。
一個值得研究的有趣領域是將模型和模擬與機器學習相結合。有很多方法可以做到這一點。例如,ML可以用來推導出模擬的起始參數。此外,ML還可以用來處理模擬的輸出。一個耐人尋味的新領域是開發基于物理學或類似物理學的模擬,使用類似ML的模型/方程。一個這樣的應用是預測 "如果?"的情景。例如,"如果我跑過這棵樹呢?接下來會發生什么?"
機器學習在傳統上被認為是人工智能的硬性(即數學)表現形式。有可能最終,所有的人工智能任務都會被簡化為數學。然而,就目前而言,一些智能任務似乎更多的是基于推理或情感。對于之前描述的方法中的任務,ML并不能充分解決以下軟性人工智能的特點。
人類并不總是完全按邏輯推理,但他們也有能力將不完整的信息拼湊起來,做出 "最佳猜測 "的決定。幾十年來,對這種行為進行編碼一直是一個挑戰。
情緒似乎是驅動人類達到某些目的的動機/目標功能。例如,快樂可能會導致不活動或追求生產性的創造力。另一方面,恐懼則可能會導致忍氣吞聲。計算機是否需要情感來更有效地運作,還是說它們最好擁有100%的客觀性?這既是一個哲學問題,也是一個未來的研究方向。不過現在,毫無疑問的是,在人與代理人的團隊合作中,計算機需要準確地解釋人類的情感,以實現最佳的團體結果。
與人類的互動性是陸軍研究未來的首要關注點。一個類似的問題是,不同的計算機系統之間如何進行交流,而這些系統不一定是由同一個實驗室設計的。研究的一個領域是用計算機來教那些在這方面有困難的人進行社會交流。 再一次,對于人與代理的合作,代理將需要能夠參與社會互動,并在人類的陪伴下遵守社會規范。
創造力通常被認為是隨機合并的想法,與新的元素相結合,由一個鑒別功能決定新創造的項目的功能和/或美學。在某些方面,創造力已經被某些計算機實驗室所證明。例如,為了設計的目的,計算機可以被賦予某些方面的創造力。
人工智能的最終目標是將許多狹義的智能算法合并成一個統一的智能,就像人類的頭腦一樣。75鑒于許多狹義的人工智能任務已經比人類的某些任務要好,即使是早期的所謂人工通用智能(AGI)也可能具有一些超人的能力。AGI的一個主要目標是將目前由人類執行的某些任務自動化。
如果不提及許多哲學家的猜測,機器學習將最終能夠改進自己的編程,導致能力的指數級提高,也許會遠遠超過人類智能,那么機器學習的研究就不完整了。這些設想既是烏托邦式的104,也是烏托邦式的105。希望超級智能能夠解決世界上的許多問題。
在這項工作中,我們回顧了機器學習的不同類別,并描述了一些更常用的方法。然后,我們指出了一小部分關于ML在ARL中的應用的例子。最后,我們預測了ML在未來可以應用于軍隊的各個領域,并概述了為實現這一結果需要解決的一些挑戰。我們希望這份文件能夠激勵未來的研究人員和決策者繼續投資于研究和開發,以充分利用ML來幫助推動美國陸軍的發展。
互動、討論和各種信息的交流使網絡成為今天的場所。文本、圖像、視頻,甚至諸如地理空間和健康數據等信息都以前所未有的規模被分享。網絡上的這種信息交流為各種數據驅動的應用產生了一個廣泛的、可自由訪問的數據源--有多種機會,但也有風險。在本文中,我們介紹了研究項目ADRIAN--"在線網絡中依賴權威的風險識別和分析 "的總體思路,該項目致力于研究和開發基于人工智能的方法,以檢測基于異質性在線數據集的個人和機構的潛在威脅。我們將首先監測選定的社交運動應用程序,并分析收集的地理空間數據。在第二步,體育應用和社交媒體平臺的用戶資料將被關聯起來,以便能夠形成一個個人集群,并能夠識別潛在的威脅。由于所謂的 "數字孿生 "可以通過這種方式重建,因此會產生敏感數據。如果這些數據也能與其他機密數據相關聯,就有可能估計出個人、團體或地點所受威脅的合理性。
現代網絡是基于互動、討論和信息交流的。然而,網絡也為數據驅動的應用創造了一個巨大的、可自由訪問的信息源。由于網絡上用戶生成的數據以自動化的方式與現有資源有效地聯系在一起,即使是無意中透露的個人信息也會產生破壞性的后果。因此,即使是微不足道的,有時是無意披露的信息也會對個人、團體或整個組織產生潛在的有害影響[1,2,3]。盡管服務提供商現在有責任和利益來確保網絡上用戶數據的安全和隱私,但這些數據被濫用、泄露,或者公開的信息被用來對付原始創建者[4]或政府機構[5]的情況越來越多。執法部門和其他人群在社交媒體平臺上面臨著越來越多的潛在威脅,這不僅僅是自2020年美國發生暴亂以來。特別是,社交媒體賬戶和帖子(如Twitter或Instagram)與流行的體育應用程序的跟蹤和位置數據的收集和鏈接,使用戶和他們的親人可以被識別,使他們可以追蹤,成為網絡攻擊的潛在目標(如網絡跟蹤,doxing,身份盜竊)[5,6]。在這種情況下,另一個與安全有關的方面是,可以利用收集到的跑步路線的地理空間數據來定位軍事基地[7]。由于不是所有的信息本身或組合都會造成威脅,單純的數據最小化、限制數據訪問、數據規避和預防工作是不夠的[8]。在研究項目ADRIAN--"在線網絡中依賴權威的風險識別和分析"中,我們采取了主動搜索、建模、預測和突出網絡威脅的方法,并特別針對政府機構進行研究。我們的方法的目標是自動監測選定的(體育)應用程序,并分析其收集的數據,將其與社會媒體資料相關聯,形成個人集群,以確定潛在的目標并評估其風險潛力。這是基于處理文本(如推文)、圖像(如建筑物前的自拍、地圖)和地理空間信息(如跑步路線)。這意味著我們正在處理一個異質的數據集。由于它的構成,對處理方法的要求也非常不同。由于在數據分析和知識提取過程中可以通過這種方式重建所謂的 "數字孿生",因此產生了極其敏感的(元)數據[6]。通過將這些信息與其他分類數據相關聯,就有可能確定相應(群體)個人或地點的威脅可信度。為了實現這些目標,技術實施必須結合信息檢索方法和法醫語言學的方法。此外,網絡分析和聚類的方法將被用來開發新的評估功能,以根據披露的信息識別目標(人、地點等)。
在本文中,我們介紹了我們對這一主題的理解,也介紹了我們的方法和我們的原型,我們正在不斷地開發。本文的組織結構如下。在第2節中,我們回顧了當前的研究現狀,重點是現有的方法和定義,因為通常缺乏統一的術語。在第3節中,我們介紹了我們自己在ADRIAN中采取的方法,從有針對性的數據收集、數據聚合和充實以及交互式可視化開始。在第4節中,我們介紹了我們在原型上的工作,并在第5節中討論了我們的方法,然后在第6節中得出結論并提出展望。
【前 言】
什么是 JADC2?
聯合全域指揮與控制 (JADC2) 是美國國防部 (DOD) 的概念,旨在將來自所有軍事部門(空軍、陸軍、海軍陸戰隊、海軍和太空部隊)的傳感器連接到一個網絡中。傳統上,每個軍種都開發自己的戰術網絡,這與其他軍種不兼容(例如,陸軍網絡無法與海軍或空軍網絡連接)。通過 JADC2,國防部設想創建一個“物聯網”網絡,將眾多傳感器與武器系統連接起來,使用人工智能算法幫助改進決策。
美國國防部 (DOD)聯合全域指揮與控制 (JADC2) 戰略描述了迫切需要集中力量推動部門行動,以增強其的聯合部隊指揮官在所有作戰領域和整個電磁頻譜范圍內指揮聯合部隊所需的能力,以威懾、并在必要時在全球任何時間、任何地點擊敗任何對手。
JADC2 戰略為識別、組織和提供改進的聯合部隊指揮和控制 (C2) 能力提供了愿景和方法,并說明了對手已經關閉了其賴以取得作戰成功的許多能力和方法優勢。作為一種方法,JADC2 支持使用創新技術開發物資和非物資解決方案選項,同時愿意修改現有政策、權力、組織結構和作戰程序,從而為聯合部隊指揮官提供信息和決策優勢。
【總 結】 全球安全環境的迅速變化正在對美國軍隊以及聯合部隊獲取、維持和保護信息和決策優勢的能力提出重大的新挑戰。此外,必須預見未來的軍事行動將在退化和競爭的電磁頻譜環境中進行。這些挑戰需要部門一致和集中的努力,以現代化如何開發、實施和管理 C2 能力,以在所有作戰領域、跨梯隊以及與任務伙伴合作。
JADC2 為塑造未來聯合部隊 C2 能力提供了一種連貫的方法,旨在產生作戰能力,以便在所有領域和合作伙伴的所有戰爭級別和階段感知、理解和行動,在相關的速度。作為一種方法,JADC2 超越了任何單一的能力、平臺或系統。它提供了一個機會,可以加速實施所需的技術進步和聯合部隊進行 C2 的方式的理論變革。 JADC2 將使聯合部隊能夠使用越來越多的數據,采用自動化和人工智能,依靠安全和有彈性的基礎設施,并在對手的決策周期內采取行動。
這一戰略的成功實施需要整個國防部 (DoD) 的集中承諾。為此,JADC2 戰略闡明了“感知”、“理解”和“行動”三個指導 C2 功能,以及額外的五個持久工作 (LOE) 來組織和指導行動以提供物資和非物資JADC2 能力。 LOE 是: (1) 建立 JADC2 數據企業;(2)建立JADC2人類企業; (3)建立JADC2技術企業; (4) 將核 C2 和通信 (NC2/NC3) 與 JADC2 集成; (5) 使任務伙伴信息共享現代化。
該戰略得到 JADC2 戰略實施計劃的支持,該計劃確定了 JADC2 的最終狀態、關鍵目標和任務,并與已建立的部門當局、論壇和流程合作,以同步和簡化工作,以優先考慮、資源、開發、交付和維持JADC2 能力。現有的軍種和機構開發和采購流程通常會產生無法滿足全域 C2 作戰需求的特定域能力。 JADC2 方法將覆蓋這些現有流程,旨在促進從根本上改進的跨域聯合能力的發展。
該戰略提供了六項指導原則,以促進整個部門在提供物資和非物資 JADC2 改進方面的努力的一致性。這些原則是: (1) 在企業層面設計和擴展信息共享能力改進; (2) 聯合部隊 C2 改進采用分層安全功能; (3) JADC2 數據結構由高效、可演進和廣泛適用的通用數據標準和架構組成; (4) 聯合部隊 C2 必須在退化和競爭性電磁環境中具有彈性; (5) 部門開發和實施過程必須統一,以提供更有效的跨領域能力選擇; (6) 部門開發和實施過程必須以更快的速度執行。
JADC2 戰略的結論是,迫切需要使用企業范圍內的整體方法來實施物資和非物資 C2 能力,以確保聯合部隊指揮官在整個競爭過程中獲得和保持對抗全球對手的信息和決策優勢的能力。