亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

異構多智能體系統為解決農業、軍事、裝配和倉庫自動化等不同領域的復雜問題提供了可能,否則單個智能體是無法解決這些問題的。要有效部署異構多機器人團隊,研究必須解決不同抽象程度的四個問題:任務規劃(是什么)、運動規劃(如何)、任務分配(誰)和調度(何時)。這些問題高度相互依存,先前的工作已經證明,利用這些問題的單個解決方案之間的協同作用的系統可以提高多機器人協調的效率和效益。

本文研究了在多智能體組隊應用中使用基于特質的模型來表示單個智能體,以及如何利用基于特質的建模來實現更穩健、更高效的多智能體聯盟組建解決方案。具體來說,我們研究了如何在聯盟組建算法中使用這些技術來回答任務分配、調度、運動規劃和任務規劃這四個問題。

我們的研究表明,利用基于機器人和任務特質建模的算法可以在異構多機器人團隊中實現高效的協調,并且在時間進度、分配質量和計算效率方面優于現有方法。本論文的貢獻如下:

  • 創建一個建模框架,使現代任務分配算法能夠推理動態特征。通過使用基于轉換的建模框架,我們創建了對以往基于特質的建模技術的擴展,以更好地推理智能體的特質如何隨時間變化。

  • 為異構多機器人系統開發基于時間擴展特質的任務分配和路徑規劃統一框架。我們引入了一種基于搜索的方法,用于基于特質的時間擴展任務分配和運動規劃,命名為增量任務分配圖搜索(ITAGS)。

  • 整合任務規劃、任務分配、調度和運動規劃的新型多機器人協調問題的形式化和解決方案。我們形式化了一類新的多機器人協調問題,該問題融合了這些問題中的每一個,并提出了一種解決方案(圖形遞歸同步任務分配、規劃和調度(GRSTAPS))。

  • 為 ITAGS 的動態變體創建框架,該變體能夠進行基于特征的任務分配修復: 我們對 ITAGS 進行了擴展,使用基于特質的動態時間擴展任務分配算法,如果智能體的特質或任務要求在執行過程中發生變化,該算法可以修復任務分配。

  • 創建一個主動學習框架,用于學習多智能體任務分配問題的特質要求: 由于理解一個聯盟的特質與該聯盟在特定任務中的表現之間的關系可能具有挑戰性,因此我們提出了一種主動學習框架來學習任務與特質之間的關系。此外,我們還提供了一種新的時間擴展任務分配算法,該算法能夠優化學習到的質量模型。

圖 2.1: 顯示各種多機器人協調問題交叉點的維恩圖。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

近年來,隨著機器人技術和電子技術的發展,無人駕駛飛行器(UAV)的體積越來越小,價格越來越低。由于無人飛行器易于購買和控制,人們開始越來越頻繁地使用它們。在本研究中,我們將從網絡的角度研究無人機群。一般來說,多架無人機可以組成一個蜂群網絡。每個無人機都是一個網絡節點。無人機之間的鏈接被視為網絡數據鏈路。在第 2 章中,我們將設計一種新穎的雙層 MAC: 我們將設計支持同步、并發多波束傳輸/接收的上層 MAC 層,以及與 802.11 兼容但充分發揮多波束天線優勢的下層 MAC 層;我們建議調整兩個 MAC 層的參數,以支持不同的任務優先級。在第 3 章中,我們為典型的機載網絡提出了一種吞吐量最優、異構(同時具有計劃通信和隨機通信)的介質訪問控制(MAC)策略。我們提出的 MAC 方案允許無人機使用上行/下行 MAC 方案與飛行器通信。我們的仿真結果表明,與傳統的 MAC 協議相比,性能有了顯著提高。在第 4 章中,我們針對機載網絡中的 MAC 設計問題提出了以下建議: (1) 長距離 Ku 波段鏈路。(2) 多波束天線。(3) 全雙工通信。我們的 MAC 設計具有 3ent 特性,即彈性、高效和智能。特別是,通過在每個波束中對流量進行編碼,它可以抵御干擾攻擊。此外,它還通過整合全雙工流量控制和多波束數據轉發實現了高吞吐量的通信。在第 5 章中,我們提出了一個采用 USRP-RIO 的多波束智能天線無線網狀網絡硬件測試平臺。我們測試了天線的方向性,實現了全雙工傳輸系統和中繼系統。此外,USRP還實現了MBSA的兩個重要特征CPT和CPR。

付費5元查看完整內容

近年來,對無人駕駛車輛等自主實體的研究開始給軍事和民用設備帶來革命性的變化。自主實體的一個重要研究重點是自主機器人群的協調問題。傳統上,機器人模型被用于考慮操作機器人群所需最低規格的算法。然而,這些理論模型也忽略了重要的實際細節。其中一些細節,如時間,以前也曾被考慮過(如執行的歷時)。在本論文中,將結合幾個問題來研究這些細節,并引入新的性能指標來捕捉實際細節。具體來說,我們引入了三個新指標:(1) 距離復雜度(反映機器人的耗電量和損耗),(2) 空間復雜度(反映算法運行所需的空間),(3) 局部計算復雜度(反映蜂群中每個機器人的計算要求)。

將這些指標應用于研究一些著名的重要問題,如完全可見性和任意模式形成。還引入并研究了一個新問題--"門道出口",它抓住了機器人群在受限空間中導航的本質。首先,研究了一類完全可見性算法所使用的距離和空間復雜性。其次,提供了整數平面上的完全可見性算法,包括一些在時間、距離復雜度和空間復雜度方面漸近最優的算法。第三,介紹了門道出口問題,并為各種機器人群模型提供了不同最優性的算法。最后,還提供了網格上任意圖案形成的最優算法。

付費5元查看完整內容

面對未來復雜多變的戰場,軍事行動越來越需要自主能力更強的機器人為士兵提供支持。要在軍事行動的整個過程中建立人類與機器人團隊合作的共同基礎,就必須進行有效的溝通。然而,人們對混合主動協作的溝通類型和形式仍不完全了解。本研究探討了人機交互中的兩種交流方式--透明度和通信模式,并研究了在協作演習中,機器人隊友操縱這些元素對人類隊友的影響。參與者與計算機模擬的機器人一起執行一項類似 “警戒搜索 ”的任務。人機界面提供了不同類型的透明度--關于機器人單獨的決策制定過程,或關于機器人的決策制定過程及其對人類隊友決策制定過程的預測--以及不同的通信模式--或者向參與者傳遞信息,或者既向參與者傳遞信息又從參與者那里獲取信息。實驗結果表明,與互動性較弱的機器人相比,既能傳遞信息又能征求信息的機器人更有活力、更討人喜歡、也更智能,但與這些機器人合作會導致在目標分類任務中出現更多失誤。此外,回應機器人的行為也會導致正確識別的數量減少,但只有當機器人只提供有關其自身決策過程的信息時才會出現這種情況。這項研究成果為設計支持人機協作的下一代視覺顯示器提供了參考。

付費5元查看完整內容

現有的決策計算模型往往局限于特定的實驗設置。造成這種限制的主要原因是無法捕捉決策者對情況的不確定性。本文提出了一個計算框架,用于研究神經科學和心理學中不確定情況下的決策制定。框架主要側重于決策者對世界狀況的概率評估,即他們的 “信念”。具體來說,它基于部分可觀測馬爾可夫決策過程(POMDPs),結合貝葉斯推理和獎勵最大化來選擇行動。利用感知決策和社會決策方面的各種實驗數據,證明了基于信念的決策框架的可行性。框架解釋了感知決策實驗中決策者的實際表現與他們對實際表現的信念(即決策信心)之間的關系。它還說明了為什么在許多情況下這種評估會偏離現實。這種偏差通常被解釋為次優決策的證據,或選擇和信心的不同過程。我們的框架對這些解釋提出了挑戰,它表明,一個優化收益的規范貝葉斯決策者也會產生同樣的偏差。此外,在定量預測人類在社會決策任務中的行為方面,方法優于現有模型,并提供了對潛在過程的洞察。結果表明,在涉及大型群體的決策任務中,人類采用貝葉斯推理來模擬 “群體心理”,并對他人的決策做出預測。最后,將方法擴展到關于他人的多個推理層次(心智理論層次),并將服從作為群體決策的一種策略聯系起來。這個擴展框架可以解釋人類在各種集體群體決策任務中的行為,為大型群體中的合作與協調提供了新的理論。

圖 1.1: 基于信念的決策框架。智能體通過行動、觀察和獎勵與世界互動。智能體無法完全觀測到世界的狀態,只能根據觀測結果和智能體的內部世界模型,以概率方式表示世界的狀態。智能體的目標是根據當前狀態的概率分布來制定策略,即所謂的信念

付費5元查看完整內容

近年來,計算機視覺和機器學習系統有了顯著改善,這主要是基于深度學習系統的發展,從而在目標檢測任務上取得了令人印象深刻的性能。理解圖像內容則要困難得多。即使是簡單的情況,如 "握手"、"遛狗"、"打乒乓球 "或 "人們在等公交車",也會帶來巨大的挑戰。每種情況都由共同的目標組成,但既不能作為單一實體進行可靠的檢測,也不能通過其各部分的簡單共同出現進行檢測。

這篇論文將描述一個用于進行視覺情境識別的新型系統,其目標是開發能夠展示與理解相關特性的機器學習系統。該系統被稱為 Situate,它能在給出情況描述和少量標注訓練集的情況下,學習目標外觀模型以及捕捉情況預期空間關系的概率模型。給定一張新圖片后,Situate 會利用其學習到的模型和一系列智能體對輸入內容進行主動搜索,以找到情況模型與圖片內容之間最一致的對應關系。每個智能體都會開發模型與輸入內容之間可能存在的對應關系,而 Situate 會為智能體分配計算資源,以便盡早開發出有希望的解決方案,但也不會忽略其他對應關系。

將把 Situate 與更傳統的計算機視覺方法(該方法依賴于檢測情境中的組成目標)以及基于 "場景圖 "的相關圖像檢索系統進行比較。將在情境識別任務和圖像檢索中對每種方法進行評估。結果表明了圖像內容和該內容模型之間的反饋系統的價值。

付費5元查看完整內容

與決策相關的活動,如自下而上和自上而下的策略制定、分析和規劃,都將受益于基于計算機的模型的開發和應用,這些模型能夠在當地環境中表現人類的時空社會行為。在努力了解和尋找減緩氣候變化特定影響的方法時尤其如此,在這種情況下,此類模型需要包括相互影響的社會和生態要素。此類模型的開發和應用一直受到以下挑戰的嚴重阻礙:設計行為以經驗證據和理論為基礎的智能體,以及測試智能體代表現實世界決策者行為的能力。本論文通過以下方法克服了這些挑戰,從而提高了開發此類模型的能力: (a) 三個新框架,(b) 兩種新方法,以及 (c) 兩種新的開源建模工具。這三個新框架包括 (a) SOSIEL 框架,它為開發新一代認知、多智能體和基于知識的模型提供了一個有理論基礎的藍圖,這些模型由具有認知架構的智能體組成; (b) 一個分析決策者有界理性的新框架,它為分析決策情境與決策者決策之間的關系提供了洞察力和便利;以及 (c) 一個分析人工智能體雙重有界理性(DBR)的新框架,它對決策情境與人工智能體決策之間的關系做了同樣的分析。這兩種新方法包括 (a) 用于獲取和操作決策知識的 SOSIEL 方法,它提高了我們為認知模型、多智能體模型和基于知識的模型獲取、處理和表示決策知識的能力;以及 (b) 用于測試人工智能體表示人類決策能力的 DBR 方法。這兩個開源建模工具包括 (a) SOSIEL 平臺,這是一個基于認知、多智能體和知識的平臺,用于模擬人類決策;以及 (b) 將該平臺作為 SOSIEL 人類擴展(SHE)應用于現有的森林氣候變化模型,即 LANDIS-II,以便分析人類與森林氣候之間的共同進化互動。為了提供示例背景和知識獲取指南,論文包括烏克蘭喀爾巴阡山地區社會生態互動的案例研究,該地區目前正在應用 LANDIS-II 和 SHE。因此,本論文通過以下方式推動科學發展 (a) 為下一代基于認知、多智能體和知識的模型提供理論基礎并展示其實施;(b) 為理解、分析和測試人工智能體代表人類決策的能力提供植根于心理學的新視角。

付費5元查看完整內容

現在,模擬被更頻繁地用于對現實世界或擬議系統進行實驗,以了解系統行為或評估改進策略。隨著時間的推移,大型企業越來越需要開發精密復雜的系統來與同行業競爭。而且,這些企業之間的聯系越來越緊密,就像一個網絡化的企業。這就進一步提高了開發能與其他企業互聯的越來越復雜的模擬的要求。在這方面,分布式仿真已廣泛應用于軍事領域,但在其他領域并沒有得到普及。這背后的原因是,在分布式仿真之間建立通信協議需要專業技術知識。科研行業一直在努力縮小這一差距,其中最重要的工作是制定高級架構(HLA)標準,為分布式仿真模型之間提供通用通信協議。

建模與仿真(M&S)行業也為開發人員提供了大量有關獨立仿真建模的文獻。在這種情況下,概念建模的重點是模型的準確性和效率,而不是互操作性。本研究也對此進行了詳細討論。直到最近,從業人員也一直在努力尋找對底層技術的支持。但隨著標準運行時基礎設施(RTI)和仿真開發平臺支持的引入,這一差距已經縮小。

HLA 標準承諾解決分布式仿真模型之間的互操作性問題,但只能提供語法層面的標準指南。因此,仿真互操作性標準組織(SISO)繼續開展研究,確定了從業人員在語義層面面臨的互操作性問題,并起草了一份互操作性問題清單。然而,已發布的 SISO-STD-006-2010 標準只指出了問題,卻沒有提供語義解決方案。

本研究的主要貢獻是提出了分布式仿真互操作性(DSI)框架,為《商用現成仿真包互操作性參考模型》(SISO-STD-006-2010)中列出的互操作性問題確定了語義解決方案。本研究建議將這些互操作性語義解決方案納入 HLA 對象建模模板規范。這樣做將有助于行業從業人員實現 HLA 的互操作性承諾,并使分布式仿真模型更具可重用性和可組合性。

付費5元查看完整內容

社會技術系統是人類和算法的集合,它們在分散控制器的部分監督下進行交互。這些系統通常顯示出復雜的動態變化,并以其獨特的突發行為為特征。在這項工作中,我們描述、分析和模擬了三類不同的社會技術系統:金融市場、社交媒體平臺和選舉。雖然我們的工作在主題內容上多種多樣,但通過研究社會系統中由進化和適應驅動的變化以及開發用于推斷這種變化的方法,我們的工作是統一的。

首先在基于智能體的模型(ABM)中分析了金融市場微觀結構的進化動態。ABM 的匹配引擎實現了頻繁的批量拍賣,這是最近開發的一種價格發現機制。我們使用各種選擇機制讓智能體承受進化壓力,證明基于量化的選擇機制與較低的全市場波動性相關。然后,我們在 ABM 中進化深度神經網絡,并證明精英個體在真實外匯數據的回溯測試中是有利可圖的,盡管在進化過程中它們的適應性從未在任何真實金融數據上進行過評估。

然后,轉向從社會技術系統生成的大型時間序列面板中提取多時間尺度的功能信號。我們引入了離散小震子變換(DST)和相關的相似性搜索算法--小震子變換和排序算法(STAR)來完成這項任務。我們通過經驗證明了 STAR 算法對定量功能參數化的不變性,并提供了使用案例。在特征提取任務中,STAR 算法與 Twitter 的異常檢測算法進行了比較。最后,我們使用 STAR 算法,利用 Twitter 詞語使用時間序列面板,自動構建了社會重大事件的敘事時間軸。

最后,模擬了試圖干涉他國選舉的外國情報機構(紅隊)與選舉所在國國內情報機構(藍隊)之間的戰略互動。我們推導出紅方和藍方的亞博弈完全納什均衡策略,并展示了當任何一方對干涉事件的結果持 "全有或全無 "態度時,軍備競賽干涉動態的出現。然后,將 2016 年美國總統大選的數據與本文模型進行了對比,在這次大選中,俄羅斯軍事情報機構進行了干預。本文了證明,在研究的大部分時間里,本文了模型捕捉到了這種干預的定性動態。

付費5元查看完整內容

多智能體自主系統與實時規劃有關的研究日益增多,本論文就是對這一研究的貢獻。多年來,由移動智能體組成的自主系統已被證明是用于探索(如太空機器人)、軍事(如搜救行動)和工業應用(如谷歌自動駕駛汽車)的高效、穩健和多功能工具。隨著自主技術日趨成熟,部署多個自主智能體來完成復雜的任務在許多不同的應用中都受到了廣泛關注。如果單個智能體可以完成一項任務,那么多個智能體就有可能更快地完成任務。然而,引入多個智能體會使整個系統變得更加復雜,因為現在的智能體需要能夠有效地相互協作。在沒有有效協作機制的情況下隨機引入智能體,可能會對生產率產生負面影響。

本論文的研究目標是使多智能體自主系統在現實應用中無處不在。我們采用了自下而上的方法來開發算法機制,以應對我們在實現這一目標的道路上所面臨的挑戰。

對于在動態環境中運行的智能體來說,能否成功執行任務取決于它能否有效地導航到目標位置。如果我們在環境中引入更多的智能體,路徑規劃的要求就會更高,因為現在智能體之間必須把彼此當作動態障礙物來對待。路徑規劃算法不僅需要避開障礙物,還需要足夠快的速度,以便在移動智能體在導航過程中遇到意外障礙時重新規劃。此外,路徑規劃算法還需要保證智能體能夠在滿足機械約束條件的情況下穿越路徑。

我們開發了一種基于隨機優化的同步重規劃矢量粒子群優化算法(SRVPSO),通過避開靜態和動態障礙物來找出成本最優的路徑。所提出的算法通過應用同步重新規劃策略,減少了路徑規劃的計算時間。SRVPSO 算法還能在一些車輛約束條件下工作,如車輛尺寸和轉向角。此外,還開發了一種不同地形的可穿越性評估方法,以便在未知環境中進行無風險、穩健的導航,同時優化總成本。

由移動智能體群組成的自主系統需要一個有效的任務規劃器來成功完成一系列任務。任務規劃器所面臨的挑戰是如何為每個智能體確定最優化的任務數量和相關任務。為了解決多智能體自主系統任務規劃過程中的任務分解和任務分配問題,我們開發了一個折中視圖(CV)模型和一個基于最近鄰搜索(NNS)的模型。結果表明,這些模型因其反應式管理結構而非常有效,能成功完成任務。NNS 模型能有效地解決智能體的分解問題。它還具有任務切換能力。

任務規劃器的多目標優化框架可確定任務所需的智能體數量。任務規劃器利用所開發的任務分解方法,最大限度地減少完成任務的時間以及智能體的數量。多目標框架的輸出是帕累托最優值,然后將其作為決策框架的輸入,根據用戶定義的一些約束條件和優先事項確定優化的智能體數量。在測量完成任務的時間時,任務規劃器利用先前開發的路徑規劃器模擬智能體在環境中的導航軌跡,以提供最準確的估計。

然而,正在進行的任務可能會受到突發事件的影響(如一些天氣事件、智能體的意外維護要求等)。未來任務的規劃取決于正在進行的任務,因為它提供了對資源可用性的估計。需要一個現實的預測模型,利用過去任務的信息,對當前任務的完成情況進行統計估計。

我們開發了一個基于人工神經網絡的預測模型,根據以往任務的信息預測任務的完成時間。該預測模型旨在為潛在的任務規劃者提供指導。利用這一數值模型,未來的規劃者可以預測所需的資源,而無需經過優化過程。上述所有算法工具都通過大量的模擬結果和實時實驗進行了演示。

付費5元查看完整內容

關鍵要點

  • 數字工程和MBSE有可能將設計決策加速到開發過程的早期階段。

  • 如果沒有構建和整合人類模型,這些決定可能是在不了解人類影響的情況下做出的。

  • 需要一個強大的框架來支持人類建模工作的發展--也許衡量標準的分類法是一個重要的起點。

  • 框架模型的標準化可以推進系統模型中人的表述的使用,改善人與系統的整合。

付費5元查看完整內容
北京阿比特科技有限公司