Richard Goodwin,PhD,阿斯利康 R&D 臨床藥理學與安全科學影像與 AI 影像與數據分析主管
新穎的綜合分子成像技術為組織微環境中的分子和細胞景觀提供了新的視角。他們能夠以前所未有的細節描繪新療法的影響,從而提供研究疾病、患者群體以及藥物療效和安全性的新方法。這使其科學家能夠以前所未有的細節了解疾病的復雜性,從而能夠有效地開發和選擇新藥。
如今,尖端成像技術越來越多地用于支持通過研發新渠道對藥物的功效和安全性進行研究。本演講將介紹新的體內和體外的范圍所采用的成像技術,描述與擴大使用分子成像技術相關的數據挑戰,并解決新的數據集成和挖掘挑戰。大型隊列成像研究需要新的計算方法,這些研究涉及基于組織的多組學分析,以前所未有的細節整合空間關系。
在開發和部署新型分子成像技術的同時,毒理學數字病理學的革命也在發生。我們正在邁向數字化未來,我們的病理學家正在以數字方式評估和審查安全研究。這需要監管機構做出重大改變和接受。在本次演講中,還將了解我們如何通過對數字病理學的首次 GLP 驗證來改變毒理學病理學同行評審,以及這是如何成為關鍵步驟并為藥物發現和開發提供數字化未來。
本白皮書介紹了研究項目解鎖人工智能對英國法律的潛力(“人工智能與英國法律”)的一些重要發現,該項目由牛津大學的一個跨學科研究團隊與一系列合作伙伴組織合作開展2019 年和 2021 年。AI for English law 項目涉及來自大學法律、經濟、管理、教育和計算機科學系的學者,涉及六個主題研究流。該研究由 UKRI 在下一代服務產業戰略挑戰基金下資助。
在第一章中,我們解釋了人工智能輔助法律技術的含義,并概述了在英格蘭和威爾士執業的律師對其使用的普遍性。我們的調查驅動的見解表明,大約一半的英國和威爾士律師現在經常使用至少一種類型的人工智能輔助法律技術解決方案——重要的附帶條件是,解決方案類型的使用差異很大。
在第二章中,我們解釋了支持人工智能的法律技術如何影響律師的工作。在這里,我們最重要的發現是,人工智能法律技術解決方案的部署通常涉及新任務的創建、新的工作安排、新的交付基礎設施,以及涉及律師和非律師的多學科團隊合作。我們還建議,人工智能法律技術的部署正在促進幫助生產和改進技術的律師與主要將其用作消費者的律師之間的分工。我們認為,這些發展可能與傳統的律師事務所治理和職業發展模式不協調。
在第三章中,我們探討了人工智能輔助法律技術對律師事務所組織和商業模式的影響。我們記錄了律師事務所與第三方合作開發支持人工智能的法律技術解決方案的新興文化,而不是在內部構建解決方案。我們確定了律師事務所和法律科技公司之間常見的合作類型,以及管理這些關系的常見合同機制。我們還考慮人工智能法律技術解決方案的部署是否會促使律師事務所超越其傳統的“法律咨詢”業務模式,專注于定制法律咨詢。一些律師事務所開始采用基于“法律運營”的商業模式,轉而關注內部流程效率和項目管理。
在第四章中,我們探討了需要相關數據來訓練支持人工智能的法律技術解決方案所帶來的挑戰。對于公開來源的數據,我們觀察到一些機構不愿與商業實體共享數據。我們還為希望使用客戶數據訓練 AI 模型的律師事務所和法律科技公司確定了一些不確定性。其中包括數據所有權、客戶同意以及利益相關者之間共享與相關數據相關的 AI 性能培訓收益。
在第五章中,我們探討了人工智能等先進技術對律師事務所招聘模式、培訓需求和內部治理的可能影響。與第四章一致,報告律師事務所與第三方組織合作提供法律技術解決方案,我們發現目前只有極少數招聘的律師事務所工作需要人工智能相關技能。此外,法律技術所需的技術技能更有可能在為非律師招聘的職位中尋找,而不是為律師招聘。此外,我們幾乎沒有發現任何證據表明律師事務所正在修改其內部治理以明確非律師高級別的職業道路。也就是說,我們還發現有證據表明律師越來越愿意發展與人工智能相關的技能。反過來,這些技能可以促進更有效的多學科團隊合作,以及進入非律師事務所組織的職業軌跡。
?以消費者和企業為中心的新技術的爆炸式增長已成為美國民眾體驗醫療保健和福祉的顛覆性力量。這些技術——統稱為“數字健康”——有可能改變個人、家庭和社區管理他們的醫療保健和福祉的方式。
美國機構和其他利益相關者正在對新工具進行大量投資;獲取、提供和使用數據的方法;以及提供衛生服務的創新方式。然而,對于指導眾多創新實現共同目標、協作工作和高優先級成果的國家優先事項集,并沒有達成一致意見。需要一個包括協作治理流程在內的戰略框架,以建立一個值得信賴、透明和公平的數字健康生態系統。
被統稱為“數字健康”的技術正在擾亂美國乃至世界各地的醫療保健和福祉現狀。在這方面,COVID-19大流行似乎是一個分水嶺。環境促使遠程保健的使用激增,在這一過程中產生了關于遠程保健的交付、影響、價值和可持續性方面的數據和潛在教訓。大流行可能產生對個人、家庭和社區產生積極影響的轉變。替代方案——在當前系統之上簡單地分層數字技術——將不僅僅維持現狀。這將使那些在連通性、數字素養和獲得護理方面已經落后的人的處境更加糟糕,并將進一步為濫用、欺詐和浪費打開大門。在一個如此富有和創新能力的國家,這樣的結果是不可接受的。國家需要采取戰略性行動,充分考慮數字衛生帶來的獨特挑戰和機遇。
該戰略為指導美國數字健康生態系統的發展提供了一個框架。該戰略包括六個目標,每個目標都有建議的行動。總的來說,這些目標旨在實現數字健康生態系統推動的改善國民健康和福祉的愿景。
本文檔旨在為領導者提供實施變革的框架。其中涉及的變化范圍很廣——不僅是技術上的,還有政治、社會和文化上的。這里的想法的實施需要大量的時間、金錢、資源的投資,最重要的是領導能力。其他國家也在國家規劃的指導下進行這些投資。美國必須采取明智的行動,但不能拖延,以實現數字衛生生態系統的愿景。
戰略的最后一個組成部分是治理。我們需要對支離破碎且過時的治理結構進行廣泛改革。避免重復、協調努力并代表全國做法的戰略投資將受益于數字衛生。該策略詳細說明了所需治理結構的關鍵組成部分,并建議了實現有效治理機制的步驟。
美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。
美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示。
國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。
當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早
為藥物開發人員而不是計算機科學家寫的,這一專論采用了一種系統的方法來挖掘科學數據源,涵蓋了從化合物篩選到先導化合物選擇和個性化藥物的合理藥物發現的所有關鍵步驟。第一部分明確地分為四個部分,討論了不同的可用的數據來源,包括商業和非商業的,而下一節著眼于數據挖掘在藥物發現中的作用和價值。第三部分比較了多藥理學最常見的應用和策略,其中數據挖掘可以大大提高研究工作。書的最后一部分是致力于復合測試的系統生物學方法。
在整本書中,工業和學術藥物發現策略被處理,貢獻者來自兩個領域,使一個知情的決定,何時和哪些數據挖掘工具使用自己的藥物發現項目。
一般來說,從數據庫中提取信息稱為數據挖掘。數據庫是一種數據集合,其組織方式允許方便地訪問、管理和更新其內容。數據挖掘包括數字和統計技術,可以應用于許多領域的數據,包括藥物發現。數據挖掘的功能定義是使用數值分析、可視化或統計技術來識別數據集中重要的數值關系,從而更好地理解數據并預測未來的結果。通過數據挖掘,我們可以得到一個模型,該模型將一組分子描述符與諸如功效或ADMET特性等生物關鍵屬性聯系起來。所得模型可用于預測新化合物的關鍵屬性值,為后續篩選確定優先級,并深入了解化合物的構效關系。數據挖掘模型范圍從簡單的、由線性技術導出的參數方程到復雜的、由非線性技術導出的非線性模型。文獻[1-7]提供了更詳細的信息。
這本書分為四個部分。第一部分涉及藥物發現中使用的不同數據來源,例如,蛋白質結構數據庫和主要的小分子生物活性數據庫。第二部分重點介紹數據分析和數據豐富的不同方法。在這里,我們提出了對HTS數據挖掘和識別不同目標命中的工業見解。另一章展示了強大的數據可視化工具在簡化這些數據方面的優勢,從而促進了它們的解釋。第三部分包括多種藥理學的一些應用。例如,在化學基因組學時代,數據挖掘可以為配體分析和目標捕捉帶來積極的結果。最后,在第四部分,系統生物學方法被考慮。例如,讀者被介紹到綜合和模塊化分析方法,以挖掘大分子和表型數據。結果表明,該方法能夠降低高維數據的復雜性,并為整合不同類型的組學數據提供了一種方法。在另一章中,建立了一套新的方法,定量地衡量化學品對生物系統的生物影響。
圖機器學習(GML)因其建模生物分子結構、它們之間的功能關系以及整合多組數據集的能力而受到制藥和生物技術行業越來越多的關注。在此,我們提出了一個關于藥物發現和研發多學科的學術-工業綜述的主題。在介紹了關鍵術語和建模方法之后,我們按時間順序介紹了藥物開發流程,以確定和總結工作包括: 靶標識別、小分子和生物制劑的設計,以及藥物的重新利用。盡管該領域仍處于新興階段,但關鍵的里程碑,包括重新用途的藥物進入體內研究,表明GML將成為生物醫學機器學習的建模框架選擇。
引言
從藥物發現到上市,平均超過10億美元,可能持續12年或更長時間[1 - 3]; 由于高流失率,很少有人能在10年內進入市場[4,5]。整個過程的高損耗不僅使投資不確定,而且需要市場批準的藥物為早期的失敗買單。盡管在過去十多年里,整個行業都在關注效率問題,同時也受到了一些出版物和年度報告的推動,這些報告強調了終結排他性和生產率下降會導致收入下降,但事實證明,在科學、技術和監管變革的背景下,明顯的改善是難以實現的。由于上述原因,現在人們對運用計算方法來加快藥物發現和研發管道[6]的各個部分更感興趣,見圖1。
數字技術已經改變了產生大量數據的藥物研發過程。變化范圍從電子實驗室筆記本[7],電子法規提交,通過增加實驗室、實驗和臨床試驗數據收集[8],包括設備的使用[9,10],到精準醫療和“大數據”[11]的使用。收集到的關于治療的數據遠遠超出了研發范圍,包括醫院、專家和初級保健醫療專業人員的患者記錄——包括從社交媒體上獲取的觀察數據,例如藥物警戒數據[12,13]。通過可重復使用藥物的數據庫,有無數的在線數據庫和其他信息來源,包括科學文獻、臨床試驗信息[14,15]。技術的進步現在允許更大的組學分析,而不僅僅是基因分型和全基因組測序(WGS);微流體技術和抗體標記的標準化使得單細胞技術廣泛應用于轉錄組的研究,例如使用RNA-seq[16],蛋白質組(靶向),例如通過大量細胞檢測[17],甚至多種方式結合[18]。
在藥物發現過程中產生和使用的生物醫學數據的關鍵特征之一是其相互關聯的性質。這種數據結構可以用圖表示,這是一種數學抽象,在生物學的各個學科和領域中廣泛使用,以模擬在不同尺度上進行干預的生物實體之間的各種相互作用。在分子尺度上,蛋白質和其他生物分子的氨基酸殘基[19,20]和小分子藥物的組成原子和化學鍵結構[21,22]可以用圖表示。在中間尺度上,相互作用組是捕獲生物分子物種(如代謝物、mRNA、蛋白質)[23]之間特定類型相互作用的圖,其中蛋白質-蛋白質相互作用(PPI)圖可能是最常見的。最后,在更高的抽象層次上,知識圖譜可以表示電子病歷(EMR)中藥物、副作用、診斷、相關治療和檢測結果之間的復雜關系[24,25]。
在過去的十年里,兩個新興趨勢重塑了數據建模社區: 網絡分析和深度學習。“網絡醫學”范式早已在生物醫學領域[26]得到認可,借用了圖論和復雜網絡科學的多種方法,運用于生物圖,如PPIs和基因調控網絡(GRNs)。這一領域的大多數方法都局限于手工繪制的圖特征,如中心性度量和聚類。相比之下,深度神經網絡是一種特殊的機器學習算法,用于學習最優的特定任務特征。深度學習的影響在計算機視覺[27]和自然語言處理[28]方面具有開創性,但受限于對數據結構規律性的要求,局限于特定領域。在這兩個領域的收斂處是圖機器學習(GML),這是一類利用圖和其他不規則數據集(點云、網格、流形等)的結構的新ML方法。
GML方法的基本思想是學習節點29,30、邊(如預測推薦系統中的未來交互)或整個圖31的有效特征表示。特別是,圖神經網絡(GNN)[32-34],它是專為圖結構數據設計的深度神經網絡體系結構,正引起越來越多的興趣。GNN通過傳播鄰近節點的信息來迭代更新圖中節點的特征。這些方法已經成功地應用于各種任務和領域,如社交媒體和電子商務中的推薦[35-38],谷歌地圖[39]中的流量估計,社交媒體[40]中的錯誤信息檢測,以及自然科學的各個領域,包括建模流體,硬質固體,以及可變形材料相互作用[41]和粒子物理學中的事件分類[44,43]。
在生物醫學領域,GML在挖掘圖結構數據(包括藥物-靶標相互作用和通過知識圖譜嵌入進行關系預測)方面已經達到了最新水平[30,44,45];分子特性預測[21,22],包括預測吸收、分布、代謝和排泄(ADME)譜[46];靶標識別[47]到重新設計分子的早期工作[48,49]。最值得注意的是,Stokes等人利用定向信息傳遞的GNN作用于分子結構,為抗生素研發提出了可重用的候選抗生素,驗證了他們在體內的預測,從而提出了結構明顯不同于已知抗生素的合適的可重用候選抗生素。因此,GML方法在藥物開發過程中具有極大的應用前景。
結論:
歷史上,生物分子相互作用和基因調控網絡的分析一直具有巨大的學術興趣,但在藥物發現和開發中可翻譯的結果有限。
網絡醫學使用手工繪制的圖特征提供了很有前景的結果,但在整合不同的生物數據源的問題上缺乏任何有原則的解決方案: 結構數據(藥物和生物分子)、功能關系(抑制、激活等)和表達(RNA-seq、蛋白質組學等)。
深度學習目前已應用于生物醫學研究的多個領域,特別是在生物醫學圖像(如組織病理標本)的解釋方面,實現由上級到醫生的結果。
圖機器學習將網絡拓撲分析技術與深度學習技術相結合,學習有效的節點特征表示。
圖機器學習已被應用于藥物發現和開發中的問題,并取得了巨大的成功,出現了一些實驗結果: 小分子設計、藥物與靶標相互作用的預測、藥物與藥物相互作用的預測和藥物的重新利用都是比簡單的非圖ML方法取得了相當大的成功和改進的任務。
本書全面概述了人工智能(AI)在醫療和放射學領域的應用進展,使讀者對人工智能的技術背景以及新技術和新興技術對醫學成像的影響有了更深入的了解。在介紹了深度學習技術等放射學領域的之后,描述了人工智能在計算科學和醫學圖像計算領域的技術演變,解釋了人工智能的基本原理和類型及子類型。后續章節將討論成像生物標記物的使用、人工智能應用的開發和驗證,以及與大數據在放射學中日益重要的作用有關的各個方面和問題。然后,本文概述了人工智能在不同身體部位的多種現實臨床應用,展示了它們為日常放射學實踐增加價值的能力。最后一節重點介紹人工智能對放射學的影響以及對放射科醫生的影響,例如與培訓有關的問題。由放射科醫師和IT專業人員編寫,這本書將對放射科醫師、醫學/臨床物理學家、IT專家和成像信息專業人員具有很高的價值。
深度學習在許多領域已經取得了顯著的成果。現在它在科學領域掀起了波瀾尤其是在生命科學領域。這本實用的書教導了開發人員和科學家如何將深度學習用于基因組學、化學、生物物理學、顯微學、醫學分析和其他領域。
理想的實踐開發人員和科學家準備將他們的技能應用于科學應用,如生物學,遺傳學,和藥物的發現,這本書介紹了幾個深度網絡原語。您將跟隨一個案例研究,研究如何設計將物理、化學、生物學和醫學結合在一起的新療法——這個例子代表了科學界最大的挑戰之一。
學習在分子數據上執行機器學習的基礎知識