題目: Deep Learning for Biomedical Image Reconstruction: A Survey
摘要:
醫學影像是一種寶貴的醫學資源,因為它可以窺探人體內部,為科學家和醫生提供豐富的信息,這些信息對于理解、建模、診斷和治療疾病是必不可少的。重建算法需要將采集硬件收集的信號轉換成可解釋的圖像。考慮到問題的病態性和實際應用中缺乏精確的解析反變換,重構是一項具有挑戰性的任務。而最后幾十年目睹了令人印象深刻的進步的新形式,提高時間和空間分辨率,降低成本和更廣泛的適用性,幾個改進仍然可以設想,如減少采集和重建時間以減少病人的輻射和不適,同時增加診所吞吐量和重建精度。此外,在小功率手持設備中部署生物醫學成像需要在準確性和延遲之間取得良好的平衡。
深度學習方法對各種醫學診斷任務都非常有效,甚至在其中一些任務上擊敗了人類專家。然而,算法的黑箱特性限制了臨床應用。最近的可解釋性研究旨在揭示對模型決策影響最大的特征。這一領域的大多數文獻綜述都集中在分類學、倫理學和解釋的需要上。本文綜述了可解釋的深度學習在不同醫學成像任務中的應用。本文從一個為臨床最終用戶設計系統的深度學習研究者的實際立場出發,討論了各種方法、臨床部署的挑戰和需要進一步研究的領域。
【導讀】元學習旨在學會學習,是當下研究熱點之一。最近來自愛丁堡大學的學者發布了關于元學習最新綜述論文《Meta-Learning in Neural Networks: A Survey》,值得關注,詳述了元學習體系,包括定義、方法、應用、挑戰,成為不可缺少的文獻。
近年來,元學習領域,或者說“學會學習的學習”,引起了人們極大的興趣。與傳統的人工智能方法(使用固定的學習算法從頭開始解決給定的任務)不同,元學習的目的是改進學習算法本身,考慮到多次學習的經驗。這個范例提供了一個機會來解決深度學習的許多傳統挑戰,包括數據和計算瓶頸,以及泛化的基本問題。在這項綜述中,我們描述了當代元學習的景觀。我們首先討論元學習的定義,并將其定位于相關領域,如遷移學習、多任務學習和超參數優化。然后,我們提出了一個新的分類法,對元學習方法的空間進行了更全面的細分。我們綜述了元學習的一些有前途的應用和成功案例,包括小樣本學習、強化學習和體系架構搜索。最后,我們討論了突出的挑戰和未來研究的有希望的領域。
概述
現代機器學習模型通常是使用手工設計的固定學習算法,針對特定任務從零開始進行訓練。基于深度學習的方法在許多領域都取得了巨大的成功[1,2,3]。但是有明顯的局限性[4]。例如,成功主要是在可以收集或模擬大量數據的領域,以及在可以使用大量計算資源的領域。這排除了許多數據本質上是稀有或昂貴的[5],或者計算資源不可用的應用程序[6,7]。
元學習提供了另一種范式,機器學習模型可以在多個學習階段獲得經驗——通常覆蓋相關任務的分布——并使用這些經驗來改進未來的學習性能。這種“學會學習”[8]可以帶來各種好處,如數據和計算效率,它更適合人類和動物的學習[9],其中學習策略在一生和進化時間尺度上都得到改善[10,9,11]。機器學習在歷史上是建立在手工設計的特征上的模型,而特征的選擇往往是最終模型性能的決定因素[12,13,14]。深度學習實現了聯合特征和模型學習的承諾[15,16],為許多任務提供了巨大的性能改進[1,3]。神經網絡中的元學習可以看作是集成聯合特征、模型和算法學習的下一步。神經網絡元學習有著悠久的歷史[17,18,8]。然而,它作為推動當代深度學習行業前沿的潛力,導致了最近研究的爆炸性增長。特別是,元學習有可能緩解當代深度學習[4]的許多主要批評,例如,通過提供更好的數據效率,利用先驗知識轉移,以及支持無監督和自主學習。成功的應用領域包括:小樣本圖像識別[19,20]、無監督學習[21]、數據高效[22,23]、自導向[24]強化學習(RL)、超參數優化[25]和神經結構搜索(NAS)[26, 27, 28]。
在文獻中可以找到許多關于元學習的不同觀點。特別是由于不同的社區對這個術語的使用略有不同,所以很難定義它。與我們[29]相關的觀點認為,元學習是管理“沒有免費午餐”定理[30]的工具,并通過搜索最適合給定問題或問題族的算法(歸納偏差)來改進泛化。然而,從廣義上來說,這個定義可以包括遷移、多任務、特征選擇和模型集成學習,這些在今天通常不被認為是元學習。另一個關于元學習[31]的觀點廣泛地涵蓋了基于數據集特性的算法選擇和配置技術,并且很難與自動機器學習(AutoML)[32]區分開來。在這篇論文中,我們關注當代的神經網絡元學習。我們將其理解為算法或歸納偏差搜索,但重點是通過端到端學習明確定義的目標函數(如交叉熵損失、準確性或速度)來實現的。
因此,本文提供了一個獨特的,及時的,最新的調查神經網絡元學習領域的快速增長。相比之下,在這個快速發展的領域,以往的研究已經相當過時,或者關注于數據挖掘[29、33、34、35、36、37、31]、自動[32]的算法選擇,或者元學習的特定應用,如小樣本學習[38]或神經架構搜索[39]。
我們討論元學習方法和應用。特別是,我們首先提供了一個高層次的問題形式化,它可以用來理解和定位最近的工作。然后,我們在元表示、元目標和元優化器方面提供了一種新的方法分類。我們調查了幾個流行和新興的應用領域,包括少鏡頭、強化學習和架構搜索;并對相關的話題如遷移學習、多任務學習和自動學習進行元學習定位。最后,我們討論了尚未解決的挑戰和未來研究的領域。
未來挑戰:
-元泛化 元學習在不同任務之間面臨著泛化的挑戰,這與傳統機器學習中在不同實例之間進行泛化的挑戰類似。
總結
元學習領域最近出現了快速增長的興趣。這帶來了一定程度的混亂,比如它如何與鄰近的字段相關聯,它可以應用到什么地方,以及如何對它進行基準測試。在這次綜述中,我們試圖通過從方法學的角度對這一領域進行徹底的調查來澄清這些問題——我們將其分為元表示、元優化器和元目標的分類;從應用的角度來看。我們希望這項調查將有助于新人和實踐者在這個不斷增長的領域中定位自己,并強調未來研究的機會。
題目: Self-Supervised Viewpoint Learning From Image Collections
簡介:
訓練深度神經網絡以估計對象的視點需要標記大型訓練數據集。但是,手動標記視點非常困難,容易出錯且耗時。另一方面,從互聯網(例如汽車或人臉)上挖掘許多未分類的物體類別圖像相對容易。我們試圖回答這樣的研究問題:是否可以僅通過自我監督將這種未標記的野外圖像集合成功地用于訓練一般對象類別的視點估計網絡。這里的自我監督是指網絡具有的唯一真正的監督信號是輸入圖像本身。我們提出了一種新穎的學習框架,該框架結合了“綜合分析”范式,利用生成網絡以視點感知的方式重構圖像,并具有對稱性和對抗性約束,以成功地監督我們的視點估計網絡。我們表明,對于人臉,汽車,公共汽車和火車等幾個對象類別,我們的方法在完全監督方法上具有競爭性。我們的工作為自我監督的觀點學習開辟了進一步的研究,并為其提供了堅實的基礎。
題目: Anomalous Instance Detection in Deep Learning: A Survey
摘要:
深度學習(DL)容易受到分布不均勻和對抗性示例的影響,從而導致不正確的輸出。為了使DL更具有魯棒性,最近提出了幾種方法:異常檢測技術來檢測(并丟棄)這些異常樣本。本研究試圖為基于DL的應用程序異常檢測的研究提供一個結構化的、全面的概述。我們根據現有技術的基本假設和采用的方法為它們提供了一個分類。我們討論了每個類別中的各種技術,并提供了這些方法的相對優勢和劣勢。我們在這次調查中的目標是提供一個更容易并且更好理解的技術,這項技術是在這方面已經做過研究的,且屬于不同的類別的。最后,我們強調了在DL系統中應用異常檢測技術所面臨的未解決的研究挑戰,并提出了一些具有重要影響的未來研究方向。
題目: Time Series Data Augmentation for Deep Learning: A Survey
摘要:
近年來,深度學習在許多時間序列分析任務中表現優異。深度神經網絡的優越性能很大程度上依賴于大量的訓練數據來避免過擬合。然而,許多實際時間序列應用的標記數據可能會受到限制,如醫學時間序列的分類和AIOps中的異常檢測。數據擴充是提高訓練數據規模和質量的有效途徑,是深度學習模型在時間序列數據上成功應用的關鍵。本文系統地綜述了時間序列的各種數據擴充方法。我們為這些方法提出了一個分類,然后通過強調它們的優點和局限性為這些方法提供了一個結構化的審查。并對時間序列異常檢測、分類和預測等不同任務的數據擴充方法進行了實證比較。最后,我們討論并強調未來的研究方向,包括時頻域的數據擴充、擴充組合、不平衡類的數據擴充與加權。
論文主題: Deep Learning for Image Super-resolution: A Survey
論文摘要: 圖像超分辨率(SR)是提高圖像分辨率的一類重要的圖像處理技術以及計算機視覺中的視頻。近年來,基于深度學習的圖像超分辨率研究取得了顯著進展技術。在這項調查中,我們旨在介紹利用深度學習的圖像超分辨率技術的最新進展系統的方法。一般來說,我們可以粗略地將現有的SR技術研究分為三大類:監督SR、非監督SR和領域特定SR。此外,我們還討論了一些其他重要問題,如公開可用的基準數據集和性能評估指標。最后,我們通過強調幾個未來來結束這項調查未來社區應進一步解決的方向和公開問題.
論文主題: Machine Learning Techniques for Biomedical Image Segmentation: An Overview of Technical Aspects and Introduction to State‐of‐Art Applications
論文摘要: 近年來,在開發更精確、更有效的醫學圖像和自然圖像分割的機器學習算法方面取得了重大進展。在這篇綜述文章中,我們強調了機器學習算法在醫學影像領域實現高效準確分割的重要作用。我們特別關注與機器學習方法在生物醫學圖像分割中的應用相關的幾個關鍵研究。我們回顧了經典的機器學習算法,如馬爾可夫隨機場、k-均值聚類、隨機森林等。盡管與深度學習技術相比,此類經典學習模型往往不太準確,但它們往往更具樣本效率,結構也不太復雜。我們還回顧了不同的深度學習結構,如人工神經網絡(ANNs)、卷積神經網絡(CNNs)和遞歸神經網絡(RNNs),并給出了這些學習模型在過去三年中取得的分割結果。我們強調了每種機器學習范式的成功和局限性。此外,我們還討論了與不同機器學習模型訓練相關的幾個挑戰,并提出了一些啟發式方法來解決這些挑戰。
報告主題: Generative adversarial networks and adversarial methods in biomedical image analysis
報告摘要: 生成對抗網絡(GANs)是深度生成模型的一個強大的子類,目前不僅受到計算機視覺和機器學習社區的廣泛關注,而且還受到醫學成像社區的廣泛關注。GANs背后的關鍵思想是兩個神經網絡共同優化:一個網絡試圖合成與真實數據點相似的樣本,而另一個網絡評估結果與樣本參考數據庫的一致性。使用GANs進行樣本合成可能用于解決大型和不同的帶注釋數據庫的不足。此外,在對抗性博弈中優化的兩個網絡的概念被用來提供額外的損失項,以提高現有圖像分析方法的性能。對抗性方法已成功地應用于典型的醫學圖像分析中,如去噪、重建、分割和檢測。此外,對抗性訓練在半監督學習和異常檢測等領域也有新的應用。在本教程中,我們將在五個部分中提供關于GANs和醫學圖像分析中的對抗方法的基礎和高級材料。我們將著重于機器學習和計算機視覺文獻中最先進的核心論文,以及它們與醫學影像分析作品的關系。為了使這些概念具體化,我們將提供一些醫學成像應用的例子,這些應用都來自我們自己的工作和其他人的工作。
邀請嘉賓:
Anirban Mukhopadhyay,達姆施塔特工業大學(德國)
Jelmer Wolterink,阿姆斯特丹大學醫學中心(荷蘭)
Konstantinos Kamnitsas,帝國理工學院(英國)
Jelmer Wolterink,阿姆斯特丹大學醫學中心(荷蘭)