亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

貝葉斯決策理論提供了一個統一的、直觀的吸引人的方法,從觀察中得出推論,并做出理性的、知情的決定。貝葉斯學派把統計推理看作是信念動力學中的一個問題,即使用有關現象的證據來修正和更新有關它的知識。貝葉斯統計是一種科學合理的方法,以整合知情的專家判斷與經驗數據。貝葉斯統計推斷不能完全獨立于將根據推斷作出的決策的上下文來處理。近年來,貝葉斯方法在各種嚴重依賴數據的學科中變得越來越普遍。本課程向學生介紹貝葉斯理論和方法論,包括貝葉斯推理的現代計算方法。學生將學習貝葉斯方法和頻率論方法在統計推斷方面的共性和差異,如何從貝葉斯的角度來處理統計問題,以及如何將數據與專家判斷以合理的方式結合起來,得出有用的和與政策相關的結論。學生將學習必要的理論,以發展一個堅定的理解何時和如何應用貝葉斯和頻率論方法,并將學習實際程序,為現象發展統計模型,得出推論,并評估證據支持假設。本課程涵蓋貝葉斯推理理論的基礎知識,包括以概率表示信任程度,似然原理,使用貝葉斯規則修正基于證據的信念,共同統計模型的共軛先驗分布,近似后驗分布的馬爾可夫鏈蒙特卡羅方法,貝葉斯層次模型,以及其他關鍵主題。引入圖形模型來表示復雜的概率和決策問題,將它們指定為模塊化組件。作業利用現代計算技術,并著重于將方法應用于實際問題。

//seor.vse.gmu.edu/~klaskey/SYST664/SYST664.html

目錄內容: Unit 1: A Brief Tour of Bayesian Inference and Decision Theory Unit 2: Random Variables, Parametric Models, and Inference from Observation Unit 3: Bayesian Inference with Conjugate Pairs: Single Parameter Models Unit 4: Introduction to Monte Carlo Approximation Unit 5: The Normal Model Unit 6: Gibbs Sampling Unit 7: Hierarchical Bayesian Models Unit 8: Bayesian Regression Unit 9: Conclusion: Multinomial Distribution and Latent Groups

付費5元查看完整內容

相關內容

貝葉斯推斷(BAYESIAN INFERENCE)是一種應用于不確定性條件下的決策的統計方法。貝葉斯推斷的顯著特征是,為了得到一個統計結論能夠利用先驗信息和樣本信息。

現代數據分析方法被期望處理大量的高維數據,這些數據被收集在不同的領域。這種數據的高維性帶來了許多挑戰,通常被稱為“維數災難”,這使得傳統的統計學習方法在分析時不切實際或無效。為了應對這些挑戰,人們投入了大量精力來開發幾何數據分析方法,這些方法對處理數據的固有幾何形狀進行建模和捕獲,而不是直接對它們的分布進行建模。在本課程中,我們將探討這些方法,并提供他們使用的模型和算法的分析研究。我們將從考慮監督學習開始,并從后驗和似然估計方法中區分基于幾何原則的分類器。接下來,我們將考慮聚類數據的無監督學習任務和基于密度估計的對比方法,這些方法依賴于度量空間或圖結構。最后,我們將考慮內在表示學習中更基本的任務,特別關注降維和流形學習,例如,使用擴散圖,tSNE和PHATE。如果時間允許,我們將包括與本課程相關的研究領域的客座演講,并討論圖形信號處理和幾何深度學習的最新發展。

目錄內容:

Topic 01 - Intoduction (incl. curse of dimensionality & overiew of data analysis tasks)

Topic 02 - Data Formalism ((incl. summary statistics, data types, preprocessing, and simple visualizations)

Topic 03 - Bayesian Classification (incl. decision boundaries, MLE, MAP, Bayes error rate, and Bayesian belief networks)

Topic 04 - Decision Trees (incl. random forests, random projections, and Johnson-Lindenstrauss lemma)

Topic 05 - Principal Component Analysis (incl. preprocessing & dimensionality reduction)

Topic 06 - Support Vector Machines (incl. the "kernel trick" & mercer kernels)

Topic 07 - Multidimensional Scaling (incl. spectral theorem & distance metrics)

Topic 08 - Density-based Clustering (incl. intro. to clustering & cluster eval. with RandIndex)

Topic 09 - Partitional Clustering (incl. lazy learners, kNN, voronoi partitions)

Topic 10 - Hierarchical Clustering (incl. large-scale & graph partitioning)

Topic 11 - Manifold Learning (incl. Isomap & LLE)

Topic 12 - Diffusion Maps

付費5元查看完整內容

本課程探索了生成式模型的各種現代技術。生成模型是一個活躍的研究領域: 我們在本課程中討論的大多數技術都是在過去10年發展起來的。本課程與當前的研究文獻緊密結合,并提供閱讀該領域最新發展的論文所需的背景。課程將集中于生成式建模技術的理論和數學基礎。作業將包括分析練習和計算練習。本課程專題旨在提供一個機會,讓你可以將這些想法應用到自己的研究中,或更深入地研究本課程所討論的主題之一。

  • 自回歸模型 Autoregressive Model
    • The NADE Framework
    • RNN/LSTM and Transformers
  • 變分自編碼器 Variational Autoencoders
    • The Gaussian VAE
    • ConvNets and ResNets
    • Posterior Collapse
    • Discrete VAEs
  • 生成式對抗網絡 Generative Adversarial Nets
    • f-GANs
    • Wasserstein GANs
    • Generative Sinkhorn Modeling
  • 生成流 Generative Flow
    • Autoregressive Flows
    • Invertible Networks
    • Neural Ordinary Differential Equations
  • 基于能量的模型 Energy-Based Models
    • Stein's Method and Score Matching
    • Langevin Dynamics and Diffusions

付費5元查看完整內容

來自臺灣國立清華大學吳尚鴻副教授主講的《大規模機器學習》教程,內容包括深度學習概述與學習理論。

本課程介紹深度學習的概念和實踐。課程由三個部分組成。在第一部分中,我們快速介紹了經典機器學習,并回顧了一些需要理解深度學習的關鍵概念。在第二部分中,我們將討論深度學習與經典機器學習的不同之處,并解釋為什么它在處理復雜問題如圖像和自然語言處理時是有效的。我們將介紹各種CNN和RNN模型。在第三部分,我們介紹了深度強化學習及其應用。

本課程也提供了編程的實驗。在整個課程中,我們將使用Python 3作為主要的編程語言。一些流行的機器學習庫,如Scikit-learn和Tensorflow 2.0將被使用并詳細解釋。

本課程也提供了編程的實驗。在整個課程中,我們將使用Python 3作為主要的編程語言。一些流行的機器學習庫,如Scikit-learn和Tensorflow 2.0將被使用并詳細解釋。

目錄內容:

  • Introduction 引言
  • Linear Algebra 線性代數
  • Data Exploration & PCA (Bonus) 數據探索
  • Probability & Information Theory 概率與信息理論
  • Decision Trees & Random Forest (Bonus) 決策樹與隨機森林
  • 數值優化 Numerical Optimization
  • 感知器 Perceptron & Adaline (Bonus)
  • 回歸 Regression (Bonus)
  • 學習理論與正則 Learning Theory & Regularization
  • 正則化 Regularization
  • 概率模型 Probabilistic Models
  • 線性回歸與度量 Logistic Regression & Metrics
  • 非參數方法 Non-Parametric Methods & SVMs (Suggested Reading)
  • 支持向量機 SVMs & Scikit-Learn Pipelines (Bonus)
  • 交叉驗證 Cross Validation & Ensembling (Suggested Reading)
  • 集成 CV & Ensembling (Bonus)
  • 預測 Predicting News Popularity
  • 大規模機器學習 Large-Scale Machine Learning
  • 深度神經網絡設計 Neural Networks: Design
  • 神經網絡 Neural Networks from Scratch (No Assignment)
  • TensorFlow 101 (No Assignment)
  • 神經網絡 Neural Networks: Optimization & Regularization
  • Word2Vec
  • 卷積神經網絡 Convolutional Neural Networks
  • Convolutional Neural Networks & Data Pipelines
  • 循環神經網絡 Recurrent Neural Networks
付費5元查看完整內容

//www.math.arizona.edu/~hzhang/math574.html

隨著信息技術的飛速發展,在各個領域產生了大量的科學和商業數據。例如,人類基因組數據庫項目已經收集了千兆字節的人類遺傳密碼數據。萬維網提供了另一個例子,它擁有由數百萬人使用的文本和多媒體信息組成的數十億Web頁面。

本課程涵蓋了現代數據科學技術,包括基本的統計學習理論及其應用。將介紹各種數據挖掘方法、算法和軟件工具,重點在概念和計算方面。將涵蓋生物信息學、基因組學、文本挖掘、社交網絡等方面的應用。

本課程著重于現代機器學習的統計分析、方法論和理論。它是為學生誰想要實踐先進的機器學習工具和算法,也了解理論原理和統計性質的算法。主題包括回歸、分類、聚類、降維和高維分析。

付費5元查看完整內容

麻省理工(MIT)Tamara Broderick副教授。Tamara之前是Michael Jordan的學生,主要研究Bayesian Nonparametric模型

//people.csail.mit.edu/tbroderick/index.html

變分貝葉斯:可擴展貝葉斯推理的基礎

貝葉斯方法為現代數據分析提供了許多可取的特性,包括 (1)不確定性的一致性量化,(2)能夠捕捉復雜現象的模塊化建模框架,(3) 整合來自專家的先驗信息的能力,以及(4)可解釋性。然而,在實踐中,貝葉斯推斷需要對高維積分進行近似,而一些傳統的算法為此目的可能會很慢——尤其是在當前感興趣的數據規模上。本教程將介紹快速、近似貝葉斯推理的現代工具。“變分貝葉斯”(VB)提供了一個越來越流行的框架,它將貝葉斯推理作為一個優化問題提出。我們將研究在實踐中使用VB的主要優點和缺點,重點關注廣泛使用的“平均場變分貝葉斯”(MFVB)子類型。我們將注重能夠讓任何人使用VB,從數據分析師到理論家,都應該知道的屬性。除了VB,我們還將簡要介紹可擴展貝葉斯推理的最新數據匯總技術,這些技術在質量上有有限數據理論保證。我們將通過實際的數據分析實例來激發我們的探索,并指出該領域的一些開放問題。

付費5元查看完整內容

這本書向讀者介紹點估計、置信區間和統計檢驗。基于線性模型的一般理論,本文對以下內容進行了深入的概述:固定效應、隨機效應和混合效應模型的方差分析;在擴展到非線性模型之前,回歸分析也首先出現在具有固定、隨機和混合效應的線性模型中;統計多決策問題,如統計選擇程序(Bechhofer和Gupta)和順序測試;從數理統計的角度設計實驗。大多數分析方法都補充了最小樣本量的公式。這些章節還包含了解答的提示練習。

付費5元查看完整內容
北京阿比特科技有限公司