亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

報告主題: Explanation In AI: From Machine Learning To Knowledge Representation And Reasoning And Beyond

嘉賓介紹: Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

付費5元查看完整內容

相關內容

 現實生活中常常會有這樣的問題:缺乏足夠的先驗知識,因此難以人工標注類別或進行人工類別標注的成本太高。很自然地,我們希望計算機能代我們完成這些工作,或至少提供一些幫助。根據類別未知(沒有被標記)的訓練樣本解決模式識別中的各種問題,稱之為。

【導讀】2020 年 2 月 7 日-2 月 12 日,AAAI 2020 于美國紐約舉辦。AAAI2020關于可解釋人工智能的Tutorial引起了人們極大的關注,這場Tutorial詳細闡述了解釋黑盒機器學習模型的術語概念以及相關方法,涵蓋基礎、工業應用、實際挑戰和經驗教訓,是構建可解釋模型的重要指南.

可解釋AI:基礎、工業應用、實際挑戰和經驗教訓

?

地址//xaitutorial2020.github.io/

Tutorial 目標 本教程的目的是為以下問題提供答案:

  • 什么是可解釋的AI (XAI)

    • 什么是可解釋的AI(簡稱XAI) ?,人工智能社區(機器學習、邏輯學、約束編程、診斷)的各種流有什么解釋?解釋的度量標準是什么?
  • 我們為什么要關心?

    • 為什么可解釋的AI很重要?甚至在某些應用中至關重要?闡述人工智能系統的動機是什么?
  • 哪里是關鍵?

    • 在大規模部署人工智能系統時,真正需要解釋的實際應用是什么?
  • 它是如何工作的?

    • 在計算機視覺和自然語言處理中,最先進的解釋技術是什么?對于哪種數據格式、用例、應用程序、行業,什么有效,什么沒有效?
  • 我們學到了什么?

    • 部署現有XAI系統的經驗教訓和局限性是什么?在向人類解釋的過程中?
  • 下一個是什么?

    • 未來的發展方向是什么?

概述

人工智能的未來在于讓人們能夠與機器合作解決復雜的問題。與任何有效的協作一樣,這需要良好的溝通、信任、清晰和理解。XAI(可解釋的人工智能)旨在通過結合象征性人工智能和傳統機器學習來解決這些挑戰。多年來,所有不同的AI社區都在研究這個主題,它們有不同的定義、評估指標、動機和結果。

本教程簡要介紹了XAI迄今為止的工作,并調查了AI社區在機器學習和符號化AI相關方法方面所取得的成果。我們將激發XAI在現實世界和大規模應用中的需求,同時展示最先進的技術和最佳實踐。在本教程的第一部分,我們將介紹AI中解釋的不同方面。然后,我們將本教程的重點放在兩個特定的方法上: (i) XAI使用機器學習和 (ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們將詳細介紹其方法、目前的技術狀態以及下一步的限制和研究挑戰。本教程的最后一部分概述了XAI的實際應用。

Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

目錄與內容

第一部分: 介紹和動機

人工智能解釋的入門介紹。這將包括從理論和應用的角度描述和激發對可解釋的人工智能技術的需求。在這一部分中,我們還總結了先決條件,并介紹了本教程其余部分所采用的不同角度。

第二部分: 人工智能的解釋(不僅僅是機器學習!)

人工智能各個領域(優化、知識表示和推理、機器學習、搜索和約束優化、規劃、自然語言處理、機器人和視覺)的解釋概述,使每個人對解釋的各種定義保持一致。還將討論可解釋性的評估。本教程將涵蓋大多數定義,但只深入以下領域: (i) 可解釋的機器學習,(ii) 可解釋的AI與知識圖和機器學習。

第三部分: 可解釋的機器學習(從機器學習的角度)

在本節中,我們將處理可解釋的機器學習管道的廣泛問題。我們描述了機器學習社區中解釋的概念,接著我們描述了一些流行的技術,主要是事后解釋能力、設計解釋能力、基于實例的解釋、基于原型的解釋和解釋的評估。本節的核心是分析不同類別的黑盒問題,從黑盒模型解釋到黑盒結果解釋。

第四部分: 可解釋的機器學習(從知識圖譜的角度)

在本教程的這一節中,我們將討論將基于圖形的知識庫與機器學習方法相結合的解釋力。

第五部分: XAI工具的應用、經驗教訓和研究挑戰

我們將回顧一些XAI開源和商業工具在實際應用中的例子。我們關注一些用例:i)解釋自動列車的障礙檢測;ii)具有內置解釋功能的可解釋航班延誤預測系統;(三)基于知識圖譜的語義推理,對企業項目的風險層進行預測和解釋的大范圍合同管理系統;iv)識別、解釋和預測500多個城市大型組織員工異常費用報銷的費用系統;v)搜索推薦系統說明;vi)解釋銷售預測;(七)貸款決策說明;viii)解釋欺詐檢測。

付費5元查看完整內容

可解釋性是當前AI研究的熱點之一。倫敦大學學院Pasquale Minervini博士在可解釋AI研討會做了關于可解釋高效可驗證表示的報告《Back to Seminars Explainable, Verifiable, Relational Representation Learning from Knowledge Graphs》,共62頁PPT,

可解釋、數據有效、可驗證的表示學習

知識圖譜是圖結構化的知識庫,其中關于世界的知識以實體之間關系的形式進行編碼。我們將討論在大規模知識圖譜使用神經鏈接預測缺失鏈接的工作,以及如何結合背景知識——形式的一階邏輯規則或約束——神經鏈接預測,從更少的數據歸納和整合。最后,我們將討論如何通過端到端可微推理器共同學習表示和規則。

付費5元查看完整內容

報告主題: Thales Embedded Explainable AI: Towards the Adoption of AI in Critical Systems

嘉賓介紹: Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

付費5元查看完整內容

報告主題: Explainable AI-The Story So Far

嘉賓介紹: Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

付費5元查看完整內容

報告主題: On The Role of Knowledge Graphs in Explainable AI

嘉賓介紹: Freddy Lecue博士是加拿大蒙特利爾泰勒斯人工智能技術研究中心的首席人工智能科學家。他也是法國索菲亞安提波利斯溫姆斯的INRIA研究所的研究員。在加入泰雷茲新成立的人工智能研發實驗室之前,他曾于2016年至2018年在埃森哲愛爾蘭實驗室擔任人工智能研發主管。在加入埃森哲之前,他是一名研究科學家,2011年至2016年在IBM research擔任大規模推理系統的首席研究員,2008年至2011年在曼徹斯特大學(University of Manchester)擔任研究員,2005年至2008年在Orange Labs擔任研究工程師。

報告目錄:

  • 人工智能中的解釋
    • 動機
    • 定義
    • 評估(以及人類在可解釋性人工智能中的角色)
    • 人類作用
    • 不同AI領域的解釋性
  • 知識圖譜在可解釋性機器學習中的角色和作用
  • 利用知識圖譜在機器學習中的可解釋性人工智能工業應用
  • 結論
付費5元查看完整內容
北京阿比特科技有限公司