亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

課程名稱: CS276: Information Retrieval and Web Search(Spring quarter 2019

課程簡介: 信息檢索(Information Retrieval)是用戶進行信息查詢和獲取的主要方式,是查找信息的方法和手段。 IR是自然語言處理(NLP)領域中的第一個,并且仍然是最重要的問題之一。 網絡搜索是將信息檢索技術應用于世界上最大的文本語料庫-網絡-這是大多數人最頻繁地與IR系統交互的區域。

在本課程中,我們將介紹構建基于文本的信息系統的基本和高級技術,包括以下主題:

  • 高效的文本索引
  • 布爾和向量空間檢索模型
  • 評估和界面問題
  • Web的IR技術,包括爬網,基于鏈接的算法和元數據使用
  • 文檔聚類和分類
  • 傳統和基于機器學習的排名方法

講師介紹: Christopher Manning,SAIL 新任負責人,Christopher Manning于1989年在澳大利亞國立大學取得三個學士學位(數學、計算機和語言學),并于 1994 年獲得斯坦福大學語言學博士學位。 他曾先后在卡內基梅隆大學、悉尼大學等任教,1999 年回到母校斯坦福,就職于計算機科學和語言學系,是斯坦福自然語言處理組(Stanford NLP Group)的創始成員及負責人。重返斯坦福之后,他一待就是 19 年。 Manning 的研究目標是以智能的方式實現人類語言的處理、理解及生成,研究領域包括樹形 RNN 、情感分析、基于神經網絡的依存句法分析、神經機器翻譯和深度語言理解等,是一位 NLP 領域的深度學習開拓者。他是國際計算機學會 (ACM)、國際人工智協會(AAAI)、國際計算語言學會(ACL)等國際權威學術組織的 Fellow,曾獲 ACL、EMNLP、COLING、CHI 等國際頂會最佳論文獎,著有《統計自然語言處理基礎》、《信息檢索導論》等自然語言處理著名教材。

Pandu Nayak,谷歌工程師,負責信息檢索方面的研究。 在加入Google之前,我曾是Stratify,Inc.的首席架構師和首席技術官。在那里,幫助開發了成功的Stratify Legal Discovery服務。

付費5元查看完整內容

相關內容

【導讀】本文為大家帶來了一份斯坦福大學的最新課程CS224n——自然語言處理與深度學習,主講人是斯坦福大學Chris Manning,他是斯坦福大學機器學習教授,語言學和計算機科學教授,斯坦福人工智能實驗室(SAIL)主任,以人為本的人工智能研究所副所長。

近年來,深度學習方法在許多不同的NLP任務中獲得了非常高的性能,使用不需要傳統的、特定于任務的特征工程的單個端到端神經模型。在本課程中,學生將深入了解NLP深度學習的前沿研究。通過講座、作業和期末專題,學生將學習設計、實施和理解自己的神經網絡模型所需的必要技能。本課程使用Pytorch 進行教學。

1. 課程介紹(Description)

自然語言處理(NLP)是信息時代最重要的技術之一,也是人工智能的重要組成部分。NLP的應用無處不在,因為人們幾乎用語言交流一切:網絡搜索、廣告、電子郵件、客戶服務、語言翻譯、虛擬代理、醫療報告等。近年來,深度學習方法在許多不同的NLP任務中獲得了非常高的性能,使用不需要傳統的、特定于任務的特征工程的單個端到端神經模型。在本課程中,學生將深入了解NLP深度學習的前沿研究。通過講座、作業和期末專題,學生將學習設計、實施和理解自己的神經網絡模型所需的必要技能。作為去年的試點,CS224n將在今年使用Pytorch進行教學。

課程鏈接://web.stanford.edu/class/cs224n/

2. 之前的課程(Previous offerings)

本課程于2017年由早期的CS224n(自然語言處理)和CS224d(自然語言處理與深度學習)課程合并而成。下面你可以找到存檔的網站和學生項目報告。

CS224n Websites: Winter 2019 / Winter 2018 / Winter 2017 / Autumn 2015 / Autumn 2014 / Autumn 2013 / Autumn 2012 / Autumn 2011 / Winter 2011 / Spring 2010 / Spring 2009 / Spring 2008 / Spring 2007 / Spring 2006 / Spring 2005 / Spring 2004 / Spring 2003 / Spring 2002 / Spring 2000

CS224n Lecture Videos: Winter 2019 / Winter 2017 CS224n Reports: Winter 2019 / Winter 2018 / Winter 2017 / Autumn 2015 and earlier

CS224d Reports: Spring 2016 / Spring 2015

3. 預備知識(Prerequisites)

1)精通Python

所有的課堂作業都將使用Python(使用NumPy和PyTorch)。如果您需要提醒自己使用Python,或者您對NumPy不是很熟悉,則可以參加第1周的Python復習(在時間表中列出)。如果你有豐富的編程經驗,但使用不同的語言(如C/ c++ /Matlab/Java/Javascript),你可能會很好。

2)大學微積分,線性代數(如MATH 51, CME 100)

你應該能夠熟練地進行(多變量)求導,理解矩陣/向量符號和運算。

3)基本概率及統計(例如CS 109 或同等課程)

你應該了解基本的概率,高斯分布,均值,標準差等。

4)機器學習的基礎(例如CS 221或CS 229)

我們將闡述成本函數,求導數,用梯度下降法進行優化。如果你已經有了基本的機器學習和/或深度學習的知識,課程將會更容易;但是,沒有它也可以使用CS224n。在網頁、書籍和視頻形式中,有很多關于ML的介紹。哈爾·道姆(Hal Daume)正在開設的機器學習課程是一種很好的入門方式。閱讀那本書的前5章將是很好的背景知識。知道前7章會更好!

4. 參考書籍(Reference Texts)

所有這些都可以在網上免費閱讀:

  • Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft)

  • Jacob Eisenstein. Natural Language Processing

  • Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing

  • Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning

  • Delip Rao and Brian McMahan. Natural Language Processing with PyTorch. (requires Stanford login)

如果你沒有神經網絡方面的背景知識,但無論如何還是想要學習這門課程,你可能會發現這些書中的一本對你提供更多的背景知識很有幫助:

  • Michael A. Nielsen. Neural Networks and Deep Learning

  • Eugene Charniak. Introduction to Deep Learning

5. 主講:Christopher Manning

克里斯托弗·曼寧(Christopher Manning)是斯坦福大學(Stanford University)計算機科學和語言學系機器學習教授,斯坦福大學人工智能實驗室(SAIL)主任。他的研究目標是能夠智能處理、理解和生成人類語言材料的計算機。曼寧是將深度學習應用于自然語言處理領域的領軍人物,在樹遞歸神經網絡、詞向量手套模型、情感分析、神經網絡依賴分析、神經機器翻譯、問答和深度語言理解等領域都有著名的研究成果。他還專注于解析、自然語言推理和多語言處理的計算語言方法,包括斯坦福依賴關系和通用依賴關系的主要開發者。曼寧與人合著了《自然語言處理的統計方法》(Manning and Schütze 1999)和《信息檢索》(Manning,Raghavan and Schütze,2008)兩本領先的教科書,還合著了關于能性和復雜謂詞的語言學專著。他是ACM Fellow,AAAI Fellow,ACL Fellow,也是前ACL主席(2015)。他的研究曾獲得ACL、Coling、EMNLP和CHI最佳論文獎。1994年,他在澳大利亞國立大學獲得學士學位,在斯坦福大學獲得博士學位。在回到斯坦福大學之前,他曾在卡內基梅隆大學和悉尼大學擔任教職。他是斯坦福NLP小組的創始人,負責斯坦福大學CoreNLP軟件的開發。

個人主頁:

6. 課程安排

01: 介紹和詞向量(Introduction and Word Vectors)

 Gensim字矢量示例(Gensim word vectors example)

02:單詞向量2和單詞意義(Word Vectors 2 and Word Senses)

03:Python復習課(Python review session)

04:詞窗口分類、神經網絡和矩陣演算(Word Window Classification, Neural Networks, and Matrix Calculus)

05:反向傳播和計算圖(Backpropagation and Computation Graphs)

06:語言結構:依存分析(Linguistic Structure: Dependency Parsing)

07:一個句子的概率?遞歸神經網絡和語言模型(The probability of a sentence? Recurrent Neural Networks and Language Models)

08:消失的梯度和花哨的RNNs (Vanishing Gradients and Fancy RNNs)

09:機器翻譯,Seq2Seq and Attention (Machine Translation, Seq2Seq and Attention)

10:最終項目的實用技巧(Practical Tips for Final Projects)

11:問答和默認的最終項目(Question Answering and the Default Final Project)

12:NLP的ConvNets(ConvNets for NLP)

13:部分單詞(子單詞模型)和轉換器結構的信息(部分單詞(子單詞模型)和轉換器結構的信息)

14:上下文單詞表示(Contextual Word Representations)

15:使用的建模上下文:上下文表示和預訓練(Modeling contexts of use: Contextual Representations and Pretraining)

16:自然語言生成(Natural Language Generation)

17:語言參考和共指解析(Reference in Language and Coreference Resolution)

18:AI中的公平和包容(Fairness and Inclusion in AI)

19:選區解析和樹遞歸神經網絡(Constituency Parsing and Tree Recursive Neural Networks)

20:NLP以及深度學習的未來(NLP+深度學習的未來)

PPT下載鏈接: 提取碼:re2l

付費5元查看完整內容

課程簡介: 本課程將向學生介紹NLP的基礎知識,涵蓋處理自然語言的標準框架以及解決各種NLP問題的算法和技術,包括最新的深度學習方法。 涵蓋的主題包括語言建模,表示學習,文本分類,序列標記,語法解析,機器翻譯,問題解答等。

課程安排:

  • 概述與簡介
  • 語言模型
  • 文本分類
  • 線性模型
  • 詞嵌入
  • 神經網絡基礎
  • 序列模型
  • EM模型
  • RNN神經語言模型
  • 解析介紹
  • 機器翻譯
  • 神經機器翻譯
  • 文本詞嵌入
  • 問答系統
  • 對話系統
  • 嘉賓講座

嘉賓介紹:

陳丹琦,普林斯頓大學計算機科學的助理教授,在此之前,是西雅圖Facebook AI Research(FAIR)的訪問科學家。 斯坦福大學計算機科學系獲得博士學位,并在斯坦福NLP集團工作。研究方向:自然語言處理,文本理解、知識解釋。

Karthik Narasimhan,普林斯頓大學計算機科學系助理教授,研究跨越自然語言處理和強化學習。

付費5元查看完整內容

課程題目

From Languages to Information

課程內容

《從語言到信息》是一門(半)翻轉的課程,有很多在線材料。大部分講座都有錄像,你可以在家里看。每周的測驗和編程作業將自動上傳和評分EdX提供講座、測驗和家庭作業。網絡世界以語言和社交網絡的形式存在著大量的非結構化信息。學習如何理解它,以及如何通過語言與人類互動,從回答問題到給出建議。從人類語言文本、語音、網頁、社交網絡中提取意義、信息和結構。介紹方法(字符串算法、編輯距離、語言建模、機器學習分類器、神經嵌入、倒排索引、協作過濾、PageRank)、應用(聊天機器人、情感分析、信息檢索、問答、文本分類、社交網絡、推薦系統),以及兩者的倫理問題。

課程嘉賓

Dan Jurafsky ,人文學科教授,斯坦福大學計算機科學教授兼語言學主席,研究自然語言處理及其在認知和社會科學中的應用。

付費5元查看完整內容

報告主題:Recent Breakthroughs in Natural Language Processing

報告摘要:自然語言處理是計算機科學、語言學和機器學習的交叉點,它關注計算機與人類之間使用自然語言中的溝通交流。總之,NLP致力于讓計算機能夠理解和生成人類語言。NLP技術應用于多個領域,比如天貓精靈和Siri這樣的語音助手,還有機器翻譯和文本過濾等。機器學習是受NLP影響最深遠的領域之一,尤為突出的是深度學習技術。該領域分為以下三個部分:語音識別、自然語言理解、自然語言生成。本次報告結合NLP的最新突破,分別剖析不同領域的研究進展,并對未來的研究方向作出簡單概述。

邀請嘉賓:Christopher Manning,SAIL 新任負責人,于1989年在澳大利亞國立大學取得三個學士學位(數學、計算機和語言學),并于 1994 年獲得斯坦福大學語言學博士學位。 他曾先后在卡內基梅隆大學、悉尼大學等任教,1999 年回到母校斯坦福,就職于計算機科學和語言學系,是斯坦福自然語言處理組(Stanford NLP Group)的創始成員及負責人。重返斯坦福之后,他一待就是 19 年。

Manning 的研究目標是以智能的方式實現人類語言的處理、理解及生成,研究領域包括樹形 RNN 、情感分析、基于神經網絡的依存句法分析、神經機器翻譯和深度語言理解等,是一位 NLP 領域的深度學習開拓者。他是國際計算機學會 (ACM)、國際人工智協會(AAAI)、國際計算語言學會(ACL)等國際權威學術組織的 Fellow,曾獲 ACL、EMNLP、COLING、CHI 等國際頂會最佳論文獎,著有《統計自然語言處理基礎》、《信息檢索導論》等自然語言處理著名教材。

付費5元查看完整內容

簡介: 該研討會的主要目標是雙重的。 首先是對可視化問答和可視對話的進度進行基準測試。本次研討會的第二個目標是將對可視化問答,對話系統和語言感興趣的研究人員聚集在一起,以共享最新技術和未來方向。 除了邀請知名研究人員發表演講包括:視覺問題解答,視覺對話,(文字)問題解答,(文字)對話系統,常識性知識, 視覺+語言等。

部分嘉賓介紹: Christopher Manning,SAIL 新任負責人,Christopher Manning于1989年在澳大利亞國立大學取得三個學士學位(數學、計算機和語言學),并于 1994 年獲得斯坦福大學語言學博士學位。 他曾先后在卡內基梅隆大學、悉尼大學等任教,1999 年回到母校斯坦福,就職于計算機科學和語言學系,是斯坦福自然語言處理組(Stanford NLP Group)的創始成員及負責人。重返斯坦福之后,他一待就是 19 年。 Manning 的研究目標是以智能的方式實現人類語言的處理、理解及生成,研究領域包括樹形 RNN 、情感分析、基于神經網絡的依存句法分析、神經機器翻譯和深度語言理解等,是一位 NLP 領域的深度學習開拓者。他是國際計算機學會 (ACM)、國際人工智協會(AAAI)、國際計算語言學會(ACL)等國際權威學術組織的 Fellow,曾獲 ACL、EMNLP、COLING、CHI 等國際頂會最佳論文獎,著有《統計自然語言處理基礎》、《信息檢索導論》等自然語言處理著名教材。

Karl Moritz Hermann,DeepMind的研究科學家。 在此之前,曾擔任過Dark Blue Labs的首席執行官。 在進入行業之前,是牛津大學CLG的計算語言學和機器學習的博士后研究員,并在Stephen Pulman和Phil Blunsom的指導下完成了DPhil。 研究方向是ML和CL、 自然語言理解,并且正在嘗試通過對基礎語言習得的研究來在這一領域取得進展。

付費5元查看完整內容
北京阿比特科技有限公司