亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

林軒田機器學習基石這門課有一個配套教材:《Learning From Data》,林軒田也是編者之一。這本書的主頁為:Learning From Data,豆瓣上關于這本書的評分高達9.4,還是很不錯的,值得推薦!可以配套視頻一起學習。

機器學習允許計算系統根據從觀測數據中積累的經驗自適應地改進性能。其技術廣泛應用于工程、科學、金融、商業等領域。這本書是為機器學習的短期課程設計的。這是一門短期課程,不是倉促的課程。經過十多年的教材教學,我們提煉出了我們認為每個學生都應該知道的核心主題。我們選擇了“從數據中學習”這個標題,它忠實地描述了這個主題是關于什么的,并且以一種類似故事的方式覆蓋了這些主題。我們希望讀者能通過從頭到尾閱讀這本書來學習這門學科的所有基礎知識。

  • 數據學習具有明顯的理論和實踐軌跡。在這本書中,我們平衡了理論和實踐,數學和啟發式。我們的納入標準是相關性。包括建立學習概念框架的理論,以及影響實際學習系統性能的啟發法。

  • 從數據中學習是一個動態的領域。一些熱門的技術和理論有時只是一時的流行,而另一些獲得了牽引,成為該領域的一部分。我們在本書中強調的是必要的基礎知識,這些基礎知識使任何從數據中學習的學生有了堅實的基礎,并使他們能夠冒險去探索更多的技術和理論,或者貢獻自己的知識。

  • 作者是加州理工學院(Caltech)、倫斯勒理工學院(RPI)和國立臺灣大學(NTU)的教授,這本書是他們廣受歡迎的機器學習課程的主要教材。作者還廣泛咨詢了金融和商業公司關于機器學習的應用,并在機器學習競賽中帶領獲勝團隊。

付費5元查看完整內容

相關內容

【導讀】《機器學習:貝葉斯和優化的視角》是雅典大學信息學和通信系的教授Sergios Theodoridis的經典著作,對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。非常值得學習。

Sergios Theodoridis教授是雅典大學信息學和通信系的教授,香港中文大學(深圳)客座教授。他的研究領域是信號處理和機器學習。他的研究興趣是自適應算法,分布式和稀疏性感知學習,機器學習和模式識別,生物醫學應用中的信號處理和學習以及音頻處理和檢索。

他的幾本著作與合著蜚聲海內外,包括《機器學習:貝葉斯和優化的視角》以及暢銷書籍《模式識別》。他是2017年EURASIP Athanasios Papoulis獎和2014年EURASIP Meritorious Service獎的獲得者。

//cgi.di.uoa.gr/~stheodor/

機器學習:貝葉斯和優化方法

本書對所有主要的機器學習方法和新研究趨勢進行了深入探索,涵蓋概率和確定性方法以及貝葉斯推斷方法。其中,經典方法包括平均/小二乘濾波、卡爾曼濾波、隨機逼近和在線學習、貝葉斯分類、決策樹、邏輯回歸和提升方法等,新趨勢包括稀疏、凸分析與優化、在線分布式算法、RKH空間學習、貝葉斯推斷、圖模型與隱馬爾可夫模型、粒子濾波、深度學習、字典學習和潛變量建模等。全書構建了一套明晰的機器學習知識體系,各章內容相對獨立,物理推理、數學建模和算法實現精準且細致,并輔以應用實例和習題。本書適合該領域的科研人員和工程師閱讀,也適合學習模式識別、統計/自適應信號處理和深度學習等課程的學生參考。

付費5元查看完整內容

【導讀】紐約大學開設的離散數學課程,這是一門運用于計算機科學的離散數學課程。這只是一門一學期的課程,所以有很多話題是它沒有涉及到的,或者沒有深入討論。但我們希望這能給你一個技能的基礎,你可以在你需要的時候建立,特別是給你一點數學的成熟——對數學是什么和數學定義和證明如何工作的基本理解。

付費5元查看完整內容

機器學習使用來自各種數學領域的工具。本文件試圖提供一個概括性的數學背景,需要在入門類的機器學習,這是在加州大學伯克利分校被稱為CS 189/289A。

//people.eecs.berkeley.edu/~jrs/189/

我們的假設是讀者已經熟悉多變量微積分和線性代數的基本概念(達到UCB數學53/54的水平)。我們強調,本文檔不是對必備類的替代。這里介紹的大多數主題涉及的很少;我們打算給出一個概述,并指出感興趣的讀者更全面的理解進一步的細節。

請注意,本文檔關注的是機器學習的數學背景,而不是機器學習本身。我們將不討論特定的機器學習模型或算法,除非可能順便強調一個數學概念的相關性。

這份文件的早期版本不包括校樣。我們已經開始在一些證據中加入一些比較簡短并且有助于理解的證據。這些證明不是cs189的必要背景,但可以用來加深讀者的理解。

付費5元查看完整內容

本書是為那些對數據科學感興趣的Python程序員編寫的。唯一的先決條件是Python的基本知識。不需要有使用復雜算法的經驗。數學背景不是必須的。讀完這本書的業余愛好者將獲得獲得第一份高薪數據科學工作所必需的技能。這些技能包括:

  • 概率論和統計學的基礎。
  • 監督和非監督機器學習技術。
  • 關鍵的數據科學圖書館,如NumPy, SciPy, panda, Matplotlib和Scikit-Learn。
  • 解決問題的能力。

開放式解決問題的能力對于數據科學職業來說是必不可少的。不幸的是,這些能力不能通過閱讀來獲得。要成為一個問題解決者,你必須堅持解決困難的問題。帶著這種想法,我的書圍繞著案例研究展開:以真實世界為模型的開放式問題。案例研究范圍從在線廣告分析到使用新聞數據跟蹤疾病暴發。

付費5元查看完整內容

機器學習是學習數據和經驗的算法的研究。它被廣泛應用于各種應用領域,從醫學到廣告,從軍事到行人。任何需要理解數據的領域都是機器學習的潛在的消費者。《A Course in Machine Learning》屬于入門級資料,它涵蓋了現代機器學習的大多數主要方面(監督學習,無監督學習,大間隔方法,概率建模,學習理論等)。它的重點是具有嚴格基礎的廣泛應用。

機器學習是一個廣闊而迷人的領域。即使在今天,機器學習技術仍然在你的生活中占據了相當大的一部分,而且常常是在你不知情的情況下。在某種程度上,任何看似合理的人工智能方法都必須包括學習,如果不是為了別的原因,而是因為如果一個系統不能學習,那么它就很難被稱為智能系統。機器學習本身也很吸引人,因為它提出了關于學習和成功完成任務的意義的哲學問題。

同時,機器學習也是一個非常廣泛的領域,試圖涵蓋所有領域對于教學來說將是一場災難。因為它發展得如此之快,以至于任何試圖報道最新發展的書籍在上線之前都會過時。因此,本書有兩個目標。首先,要通俗地介紹一個非常深的領域是什么。第二,為讀者提供必要的技能,以便在新技術發展過程中掌握新技術。

  • Front Matter
  • Decision Trees
  • Limits of Learning
  • Geometry and Nearest Neighbors
  • The Perceptron
  • Practical Issues
  • Beyond Binary Classification
  • Linear Models
  • Bias and Fairness
  • Probabilistic Modeling
  • Neural Networks
  • Kernel Methods
  • Learning Theory
  • Ensemble Methods
  • Efficient Learning
  • Unsupervised Learning
  • Expectation Maximization
  • Structured Prediction
  • Imitation Learning
  • Back Matter
付費5元查看完整內容
北京阿比特科技有限公司