亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

勞動力人口下降、人口老齡化、人力成本上升推動機器換人,“人形”天花板遠高于非人形。中國勞動力人口數量持續下滑,美、德、日等多國具有同樣趨勢,人力成本持續上升,中國已不再是人力低成本國家,機器替代人是一大趨勢。“人形”原因主要有:1)“人形”是最適合人類社會所有場景的形態,無需改變場景來適應機器。2)恐怖谷理論下,“人形”的好感度上限遠高于非人形。3)“人形”的肢體語言最符合人類認知慣性。   ChatGPT本質是文字接龍,RobotGPT可看作是文字/語言/各類傳感器接收的信號-動作接龍,拐點或是適用于機器人運動控制的生成式大模型。斯坦福大學2023年最新論文   《RobotGPT:FromChatGPTtoRobotIntelligence》基于和ChatGPT類似的工作原理構建了RobotGPT的框架。以特斯拉Optimus機器人為例,當前最核心的問題是在算法層面的運動控制,一套適用于機器人運動控制的生成式大模型將對人形機器人有質的提升。     極強通用性的人形機器人將是機器人界的iPhone,類比自動駕駛,通用機器人不需要完全通用才有商業價值。根據第一財經報道,美國當前最低時薪7.25美元,即便只替代最基礎的崗位,人力成本也將大幅下降。根據萊特定律,產量從一到十的過程中,生產成本會有三次15%左右的降低,最終生產成本會降到原來的60%左右。過去大多數時間里科技進步是線性的,摩爾定律將其變為了指數級。從1958年半導體的發明到2022年已到達古印度舍罕王故事中“棋盤的后一半”。     特斯拉機器人具備的優勢:1)價格:量產價格若在2萬美元以內,相比人力成本已經是工業、商業容易接受的價格。2)商業定位明確:從最初的定位就符合特斯拉一貫的PMF(Product/MarketFit)風格,瞄準商業化。3)具備“具身智能”生態:FSD自動駕駛系統、Dojo計算機、D1芯片、大型沖壓機、自有工廠做數據采集等。4)迭代速度快:僅一年半便從概念圖到完成復雜任務。

付費5元查看完整內容

相關內容

 產業需求及催化

  需求:一是政策強導向,2025年大型煤礦智能化,2035各類煤礦智能化;二是礦山危險大、招工難,無人化是訴求

  催化:一是華為、運營商等ICT商涌入催熱市場;二是大模型推動礦山AI開發從“作坊式”到“工廠式”升級

  趨勢:一是AI應用深入采掘、運輸、洗選等縱深環節;二是“機器換人”迫切性高,安控和掘進類機器人提速

  投資邏輯及空間

  煤炭的能源消費主體地位+能源安全“兜底保障”;②煤炭保供穩價,誘發行業進入新一輪擴產能周期

  高盈利周期下,智能化投資意愿加強,智能礦山建設明顯提速;④5G、AI、自動控制等新技術為礦山智能化轉型提供關鍵引擎

  礦山智能化滲透率低,單礦井投資上億,市場空間數千億;⑥礦區無人駕駛+煤礦機器人,具備高速增長潛力

  價值拆解及競爭格局

  終端側:復雜環境帶電終端需隔爆、本安特殊處理;②網絡側:生產、通信、物聯、定位等一張融合專網

  平臺側:統一融合的綜合管控平臺是智能化礦山的核心大腦;④應用側:安全監測、生產控制、經營管控是礦山智能化的關鍵環節

  競爭格局:終端、應用層壁壘較高,ICT廠商競相涌入網絡、平臺層市場  

付費5元查看完整內容

人形機器人產業發展仍處于 0-1 階段, 當前行業投資邏輯偏向事件驅動型的主題投資,但可落地服務場景的人形機器人成長空間非常廣闊,值得長期關注。本文將圍繞以下熱點問題作出討論:①當前節點人形機器人產業有哪些變化?②如何判斷其市場空間?③我國在 Tesla 人形機器人產業鏈中哪些環節具體受益?④各環節供應格局及壁壘如何?⑤市場化如何展望?我們認為 AI 賦能及多方入局情形下人形機器人產業發展明顯加速,商業化節奏值得期待,我國制造企業憑借成本優勢有望在人形機器人硬件端獲益。本文亮點在于,我們對 Tesla Optimus 制造成本進行拆分,討論各零部件基本原理、技術壁壘及供應格局, 并從價值量/壁壘等維度指出可重點關注電機、滾珠絲杠、減速器、傳感器等部件,進而跟蹤各環節中的有望進入 Tesla 供應鏈或能實現技術突破、國產替代及產能釋放的優秀國產制造企業。

  市場邊際變化:AI 超預期發展及多方玩家入局, 關注 Tesla AIDAY 等事件催化。我們認為 2023 年相對于 2022 年而言,市場最大的邊際變化在于:一方面,人形機器人是 AI+機械的最大落地場景, ChatGPT 接入機器人,有望使得人機互動更加智能,更多元化,產業落地有望加速。另一方面,全球范圍內興起人形機器人熱潮, 特斯拉、波士頓動力、 Engineered Arts、 1X Technologies、優必選、達闥、小米、 傅利葉智能等海內外企業紛紛入局,風投企業軟銀集團創始人孫正義亦在今年 6 月股東大會中表示出對 AI革命的強烈興趣。展望未來,我們認為短期可以重點關注今年 7月傅利葉智能的新品發布會及 9 月 Tesla AI DAY,長期需要跟蹤人形機器人于明后兩年的量產進度。   市場空間判斷:成長性明確,長期價值有望超過電動車。據高盛預測, 在技術得到革命性突破的理想情況下人形機器人 2025-2035 年銷量 CAGR 可達 94%, 2035 年市場規模達 1540 億美元。若參照電動汽車發展歷程,則樂觀情況下人形機器人 2025-2035 年銷量 CAGR 可達 59%。從勞動力替代角度來看,人形機器人在兩年投資回報期情形下將逐步實現從 B 端至 C 端的量產推廣。TeslaCEO 馬斯克在今年 5 月股東大會中指出長期維度人形機器人價值將超過電動車。

  受益環節:把握我國制造企業在人形機器人硬件端受益機會。參照智能手機及電動汽車的發展, 蘋果 IOS 系統及特斯拉 FSD 系統均由企業自研自控,是軟件算法的核心部分。而硬件方面,為達降本訴求通常采取外購形式,因此我們認為中國制造企業有望憑借明顯的成本優勢在人形機器人硬件產業鏈上獲得受益機會。  

付費5元查看完整內容

虛擬人產業受技術與需求驅動,擬人化是重要發展方向:虛擬人可分為功能型與身份型虛擬人,功能型虛擬人主要以替代日常工作為主要目的;身份型虛擬人以IP形象為特征,是認知與需求的投射,市場空間更廣闊。虛擬人已進入快速成長期,AI大背景下虛擬人產業從基礎層、平臺層、應用層到交互層均迎來較大變革,傳統虛擬人已過渡至AI虛擬人時期,根據艾媒咨詢數據,到2025年虛擬人核心市場規模有望達到480.6億元。

  AI推動虛擬人降本增效,交互能力提升,技術、應用、商業化良性循環:AI與虛擬人產業結合度持續提升,AI逐步實現虛擬人制作全流程覆蓋,虛擬人制作降本增效,AI建模、驅動替代傳統的CG建模與中之人驅動;虛擬人接入大模型大幅提升虛擬人多模態交互能力,應用場景持續拓展。AI帶來降本增效,打開虛擬人行業商業化空間,應用場景拓展進一步豐富虛擬人產業的商業模式,AI虛擬人產業有望實現商業化、技術進步、應用拓展良性循環。

  AI驅動虛擬人應用場景加速拓展,細分賽道有望受益于AI賦能:隨著AI等技術進步對虛擬人形象與交互能力的提升,AI能夠在更多場景替代人力。廣告營銷領域,虛擬人通過第三方合作與品牌自有的形式提升營銷效果;直播電商領域,AI數字人替代真人直播,直播時長大幅提升;陪伴場景下,虛擬人交互能力提升,能夠滿足人的情感需求;泛娛樂場景下,數字人擬人化程度提升,能夠參與泛娛樂活動,實現與真人交互。  

付費5元查看完整內容

 AI技術發展,機器視覺正從傳統標準化場景過渡到非標準化應用場景。機器視覺行業經過多年發展,目前已被廣泛應用在各行各業,發揮著識別、測量、定位及檢測功能,但其使用場景主要聚焦在標準化檢測領域,整體呈現出自動化、標準化程度高等特點,但伴隨AI技術發展,機器視覺有望從過去標準化應用場景逐步過渡到非標準化應用場景,市場規模有望進一步打開。

  在AI賦能下,行業有望迎來空前發展機會。(1)深度學習算法不斷迭代,人工智能生成內容百花齊放。根據GGII數據,國內機器視覺市場規模有望從21年138億元增長至25年349億元。(2)AI背景下,SAM模型應用不斷拓展。近日Meta發布SAM模型是機器視覺領域的底層突破性技術,極大降低了圖像處理門檻,有望更好推動機器視覺在下游各場景領域的應用。     國產機器視覺廠商正逐步崛起,成為國內市場中堅力量。雖然國內機器視覺行業起步較晚,但經過多年發展,目前也已陸續涌現出優秀的機器視覺廠商,逐步實現進口替代。如以光源為代表的核心零部件已逐步實現國產替代,且正往高端化趨勢發展;3D視覺傳感器正不斷探索潛在的細分領域應用,尋找潛在的增長爆點;而軟件算法亦伴隨AI技術發展不斷升級更新。我們認為:伴隨以SAM模型為代表的AI技術發展,軟件算法門檻有望極大降低,因此更應該關注具備核心技術能力  

付費5元查看完整內容

 看好工業機器人賽道,受益智能制造、國產化雙重驅動

  工業機器人為譽為“制造業皇冠上的明珠”。IFR、中國電子學會數據顯示,2022年中國工業機器人市場規模609億元,全球占比45%,為第一大市場。2022年國內工業機器人銷量28萬臺,2011-2022年CAGR26%,十年間銷量擴增十倍。2021年韓國/日本/德國/中國工業機器人密度分別為1000/399/397/322臺/萬人,我們認為我國滲透率仍具備翻倍空間:①從經濟性看,人口老齡化加劇導致人力成本提升,機器替人為大勢所趨。②從政策導向看,2023年1月工信部發布《“機器人+”應用行動實施方案》,目標2025年我國制造業機器人密度較2020年實現翻番。受益機器替人及機器人政策導向,我們預計2022-2025年我國機器人銷量CAGR為14%。

  工業機器人國產化提速,關注大六軸、焊接等低國產化率環節

  IFR、中國電子學會數據顯示,2022年我國工業機器人國產化率僅35%,國產龍頭埃斯頓/匯川機器人市占率僅6%/5%,國產化仍有較大提升空間。2023Q1工業機器人國產化率41%,同比提升9pct,國產化提速。我們認為國產化率較低的環節成長空間大、壁壘高、盈利能力較好,是行業阿爾法來源之一,我們將國產化率較低的環節總結為三點:①大六軸:2022年國產化率僅17%,國產龍頭埃斯頓份額8%,引領國產替代。②汽車3C:2022年汽車及3C行業機器人銷量占比達47%,市場大、國產化率低,在鋰電與汽車融合趨勢下,國產品牌由光伏、鋰電拓展至傳統3C、汽車行業。③焊接:2021年焊接機器人國產化率僅34%,凱爾達專注于焊接機器人業務,埃斯頓通過收購CLOOS補齊國內厚板焊接短板,未來有望在焊接領域取得突破。

  工業機器人下一個風口:AI自然語言及具身智能

  工業機器人痛點在于開發交付門檻較高,需要專業工程師手動編寫代碼、反復調試后,才能匹配產線特有的任務需求,高昂成本極大阻礙了工業機器人的普及。在AI大模型趨勢下,工程師可通過大模型自動生成代碼指令完成機器人功能的開發與調試,用日常對話的方式來指揮機器人。2023年年初,谷歌推出視覺語言模型PaLM-E,并運用到工業機器人上,根據環境變化尋找行動方案,無需任何人類引導。2023年阿里巴巴將千問大模型接入工業機器人,成功用對話操控機器人工作。在工業領域內,機器人能夠與人類直接對話,加速應用實現及潛在應用領域滲透率飛躍,是未來十年最重要的機會之一。

  尋找工業機器人產業鏈強阿爾法

  工業機器人產業鏈中優選強阿爾法,我們認為主要有三個思路:(1)上下游全產業鏈布局,應對可能到來的行業格局分化;(2)國產化率低、壁壘較高的環節:大六軸、汽車3C、焊接;(3)規模持續擴大,有望迎來盈利能力上行。根據以上條件,我們篩選出7家機器人產業鏈核心標的進行梳理,分別為發那科、埃斯頓、匯川技術、新松機器人、埃夫特、華中數控、凱爾達。  

付費5元查看完整內容

AI+制造業賦能,META發布SAM助力機器視覺迎來GPT時刻。機器視覺技術使得工業設備能夠“看到”它正在進行的操作并進行快速決策,完整機器視覺系統由硬件+軟件組成,分別進行成像和圖像處理工作。目前,以“AI+人類感知”融合為代表的新興技術開始逐漸滲透至工業制造各環節,機器視覺作為AI+制造業的種業落地技術已經介入制造業生產環節的跟蹤、產品質量的檢測等。我們認為人工智能是機器視覺的母身,深度學習為機器視覺的技術堡壘,近期Meta發布SAM模式有望助力機器視覺迎來GPT時刻。  機器視覺下游的高景氣反哺明顯,AI與機器視覺成為剛需。AI+機器視覺技術優勢明顯,政策加持+社會需求(人口紅利退潮)驅動中長期發展,我國機器視覺待滲透空間較大。隨著工業4.0等概念的持續深化+研發技術的不斷突破,AI+機器視覺持續賦能下游工業應用領域,有望受益于下游賽道的高景氣,從行業領域來看,高景氣賽道的半導體、汽車、新能源有望成為未來行業的最重要驅動力之一,電子領域在中長期仍是應用范圍最廣的下游。從應用深度來看,AI賦予機器視覺的高精度優勢,使得機器視覺成為不少行業的剛需標配,機器視覺已逐漸嵌入半導體、汽車、新能源鋰電池與光伏的生產檢測環節,提高汽車電子的裝配質量、突破光伏缺陷檢測瓶頸以提高產品良率等。  機器視覺成本集中在上游,核心環節的國產替代化方興未艾。25年全球有望達到千億市場規模,中國增速領先全球(CAGR為15%)。剖析產業鏈,機器視覺產業鏈的上游硬件(奧普特/海康/大恒/中光學/舜宇/福光)鏡頭、工業相機、光源以及軟件(凌云光/奧普特/海康/鼎捷),中游為裝備制造/系統集成廠商(天準/凌云光/大恒/矩子/華興源創/精測電子),成本集中在技術壁壘高筑的工業相機(價值量占比23%)以及軟件算法(35%);競爭格局方面,全球機器視覺市場以康耐視(美國)、基恩士(日本)、巴斯勒(德國)為代表的企業占據全球>50%市場份額,以康耐視和基恩士為代表的雙巨頭以入局早、扎實產品技術、廣泛應用場景經驗的優勢提前據市場優勢。國內機器視覺上游行業仍處于成長階段,增長速度大致相當,關注國產替代+AI迭代下工業相機與軟件環節發展。

付費5元查看完整內容

大模型提升機器理解能力,優化人機交互方式。AI大模型是實現通用人工智能(AGI)的重要方向,包含自然語言處理(NLP)、計算機視覺(CV),多模態大模型等。ChatGPT推出兩個月MAU突破1億,是自然語言處理領域突破性的創新,大力出奇跡后出現涌現能力,更理解人類語言。大模型“預訓練+精調”即可對下游應用賦能。我們認為大模型優化人類與機器交互方式,是效率的革命。大模型是“大數據+大算力+強算法”結合的產物,對比國內外大模型,算力儲備上國內并無短板;算法上OpenAI有先發優勢;前期數據的豐富度和量對大模型的訓練至關重要。

  百度文心大模型:包含NLP、CV等在內的系列大模型。文心大模型包含NLP大模型、CV大模型、跨模態大模型、生物計算大模型、行業大模型等。與Bing類似,文心一言有望優化C端用戶搜索、創作體驗;ToB方面,百度已開放大模型API接口,在文案、AI作畫、開放域對話方面賦能企業。對于具體行業,百度推出文心行業大模型,以“行業知識增強”為核心特色。     阿里巴巴通義大模型:由通義-M6模型融合語言模型和視覺模型組成,率先應用在硬件終端天貓精靈和軟件通義千問。通義大模型包括統一底座“M6-OFA”,三大通用模型“通義-M6”“通義-AliceMind”“通義-視覺大模型”,以及行業層面的不同垂直領域專業模型。在應用上,天貓精靈基于通義大模型推出擬聲助手“鳥鳥分鳥”;對話式通義千問已經開始內測。     騰訊混元大模型:采用熱啟動降低訓練成本,文字視頻等多領域表現優異,已在廣告游戲等多場景落地。目前騰訊混元大模型已在騰訊廣告、內容創作、游戲、對話式智能助手等方面實現落地,大幅提升工作效率并降低成本。     華為盤古大模型:基于ModelArts研發設計的系列模型,在物流、藥物研發、氣象預測等多領域已實現落地。目前盤古CV大模型已覆蓋了物流倉庫監控等領域;NLP大模型覆蓋了智能文檔檢索、智能ERP和小語種大模型;科學計算大模型則應用于氣象預報、海浪預測等方面。     字節跳動AI探索基礎扎實,在語言大模型和圖像大模型初步布局。字節跳動AIGC大模型將從語言和圖像兩種模態發力,預期在今年年中推出大模型。字節跳動在算力、算法、數據方面并無短板。目前模型可用于圖文、視頻內容生成等,飛書將推出智能AI助手“MyAI”。  

付費5元查看完整內容

來源:中國信息通信研究院   日前,在“2022可信AI峰會”上,中國信息通信研究院云計算與大數據研究所所長何寶宏正式發布并解讀了“2022 人工智能十大關鍵詞”。  

  關鍵詞一:大模型

  大模型技術創新和工程落地齊頭并進,掀起行業大模型落地熱潮。大模型的更新迭代速度不斷加快,開始從“可用”的基礎大模型轉向為“好用”的行業大模型。   在技術創新方面,大模型的網絡構建、模型訓練、算法調優等技術趨于成熟,持續提升其通用性和泛化性,已初步具備通用智能雛形。例如,近期開源的NLLB可支持200種語言的相互翻譯。   在工程落地方面,已初步形成大模型As a Service的應用模式,加速向互聯網、ICT、金融、政務等垂直行業滲透。為支撐應用方更便捷地開發和部署大模型,多家頭部企業發布了行業大模型及開發工具。     關鍵詞二:生成式AI

  生成式AI開辟AI創作能力,加速AI與數據要素深度融合。近幾年生成式AI的技術能力越來越成熟,可生成逼真且富有創意的多模態數據,形成自動寫作、代碼生成、數字人等典型的應用形態,已連續兩年入選《人工智能技術成熟度曲線報告》。   在技術方面,生成式AI借助生成對抗學習等技術,能夠生成更加真實、更有創意、更有趣味的內容。例如,2017至2022年,在圖片生成權威榜單上,真實度和趣味度綜合評分提升了近5倍。   在應用方面,生成式AI既是生產要素,也是生產工具。除了圖像生成以外,在寫作和編程等方面也取得進展。    關鍵詞三:AI4S(AI for Science)

  AI for Science在多個傳統科學領域取得重大突破。隨著人工智能技術的快速發展和大規模應用,AI在逐漸成為科學研究新的生產工具,AI4S將進一步釋放科學研究的生產力,促進人工智能的工程落地。   一方面,AI與傳統科學領域的深度融合,極大拓展該領域解決問題的能力,目前AI在生物、數學、材料、物理、基因、化學等基礎科學領域都取得了諸多成果和突破,并對科學研究范式產生了深刻的影響,例如,目前人工智能已經能夠預測幾乎所有的生物蛋白質的可能結構,被譽為人類在21世紀取得的最重要的科學突破之一,可能開啟“數字生物學”的新時代。   另一方面,傳統科學領域的進步和對AI技術的需求加速了AI本身的發展。當前產學研共同發力人工智能與科學的融合,產業界聚焦工具創新,開源工具和基于開源工具產生的創新成果呈爆發趨勢,AI4S的研究范圍也擴展到了更多基礎問題領域。高校和研究院聚焦算法和應用,用AI算法更好地將科學計算和物理模型相連接,進而指導科學與產業創新。    關鍵詞四:知識驅動AI

  知識驅動助力人工智能認知能力的提升,滿足人工智能深入各個行業不同應用場景的需求。隨著深度學習與知識圖譜等多重技術的深度融合,綜合利用大量知識數據中的因果和邏輯關系,可以助力人工智能認知能力的提升,來解決人工智能深入各個行業時場景復雜、可解釋性較低等問題。   在技術方面,知識和數據雙輪驅動的人工智能技術路線展現了強勁的發展潛力,知識的融合應用有效地提升了智能問答、智能推薦、大規模預訓練模型等人工智能技術中的效果。文心大模型、孟子大模型等均嘗試利用知識增強技術路線提升效果。   在應用方面,知識與人工智能的融合拓展了人工智能的應用范圍,促進形成知識凝練、知識流轉、知識賦能閉環,推動數字化發展下行業與企業各類知識的沉淀、流轉,顯著提升實際場景的智能應用水平。     關鍵詞五:超級自動化

  超級自動化已經成為企業即開即用、敏捷配置的數字化轉型工具箱。經過一年多的發展,超級自動化有了很多新的價值。在概念深化方面,中國信息通信研究院在今年發布的《超級自動化技術與應用研究報告(2022)》中首次對其主要概念進行了深入剖析和理解,認為“超級自動化是多種技術能力與軟件工具組合,覆蓋了自動化從需求發現到應用實踐的全流程”;在技術發展方面,機器人流程自動化、智能流程管理、低代碼應用平臺、流程挖掘等工具和平臺,銜接起了企業級各類復雜業務場景,其綜合應用、交互使能是超級自動化發揮效能的重要手段。   人工智能、大數據、云計算等技術作為底座,為超級自動化發展注入了源源不斷的強大動力;在應用拓展方面,政府和企業使用超級自動化技術開始呈現出全面爆發的狀態。例如,日本全面引入RPA實現政務的數字化轉型,據統計各級政府的引入率已經超過90%。同時,產業創新層面,領先的RPA企業都不再局限于RPA或流程挖掘等單點能力的輸出,而是圍繞信通院提出的超級自動化技術與工具體系,開始由點及面的建立起立體服務架構。    關鍵詞六:人工智能中臺

  人工智能中臺重塑企業智能化轉型的能力底座。隨著企業從重視人工智能的“研發”,到“研發-運營”并重,AI開發平臺也逐漸向AI中臺演進。   理念層面,AI中臺更加重視管理和運營,技術層面,AI中臺高度集約了AI能力,具有規模化、標準化、可擴展等特點。其中,規模化是指整合了豐富的人工智能開發、部署、測試、運維等能力,標準化是指將異構的軟硬件環境封裝為標準化的界面,可擴展是指可以不斷適配新的技術和工具,保證AI技術的動態演進。   通過與數據中臺、云平臺、業務中臺、運營平臺的打通,AI中臺正在加速融入企業的技術平臺體系中。當前階段,大型的行業企業正在積極構建AI中臺體系,通過高效的組織管理實踐,推動全場景全領域的AI賦能。    關鍵詞七:MLOps

  MLOps落地開花,AI資產沉淀和治理成為實踐新風向。隨著業界對人工智能研發效率、團隊協作、安全保障等需求進一步提升,整個MLOps產業實踐呈現出“內涵很明確、落地很困難”的現狀。   從技術內涵來看, MLOps的核心和要求已明確,即圍繞“一個基礎、兩個關鍵、三個提升”,逐步建設從需求、開發、交付到模型運營的全生命周期運營管理機制。一個基礎是指持續交付,通過搭建工廠流水線式的模型生產方式,提高規模化生產效率。許多頭部企業都已開始實踐模式的持續交付,部分企業模型研發效率提升超過40%。兩個關鍵是指持續訓練和持續監控,通過持續訓練和持續監控搭建高效閉環的運營管理體系,提高機器學習可觀察性,保證模型質量,增加賦能效果。   三個提升是指數據管理、特征管理、模型管理能力的提升。對數據、特征和模型等AI資產加以沉淀、安全管控和風險治理,提升企業級AI治理能力,已成為MLOps新風向。   從落地現狀來看,持續交付、持續訓練、持續監控和模型治理難度依次提升,產業界當前尚處在提升持續交付和持續監控能力過程中,模型治理等僅有少量探索,未來仍然是AI工程化的重點方向。   此外,MLOps的工具市場持續火熱,端到端的MLOps一體化工具和細分場景的專項工具都非常火熱,端到端工具追求大而全的功能集,專項工具在局部或某些場景下功能和性能較好,例如流水線編排、模型監控、特征存儲、可觀測等工具,未來MLOps相關工具可能會成為AI軟件市場的重要賽道。    關鍵詞八:人工智能新基建

  AI軟件設施加速新基建的賦能效應。自2018年新基建的概念提出以來,政產學研用多方主體發力建設人工智能基礎設施,AI新基建的內涵也在這個過程中逐步明晰。   AI新基建主要包括數據基礎設施、算力基礎設施和AI軟件設施。數據和算力基礎設施非常重要,但是如果沒有軟件設施作為連接樞紐,則難以充分發揮人工智能的賦能效應,支撐起豐富的AI應用和服務。   因此,AI軟件設施在近兩年成為產業焦點,AI開源框架生態、預訓練大模型體系、AI軟件平臺生態等內容都得到了長足的發展。   AI新基建的愿景是讓AI像水、電一樣成為觸手可得的普惠資源:政策層面,國家以及各行業的“十四五”規劃相繼對人工智能新基建提出指導意見,不斷推動新基建的落地應用;產業層面,頭部科技企業聯合地方政府,積極建設運營區域性基礎設施,不斷加速AI生態的培育。

  關鍵詞九:企業智能

  企業智能化建設手段與方法實現全新變革,逐漸向全場景、全流程、全層級深度融合應用轉變。隨著智能化技術的不斷發展和應用深入,企業智能建設從部分場景、外部維護、單點優化逐漸向系統化、全面化轉變,通過智能基礎設施和智能應用雙驅重塑企業智能化發展勢能。   一方面,企業建設完善人工智能中臺、知識中臺、大模型等智能基礎設施,筑牢了企業智能的底座、打造了企業的知識大腦、拓寬了企業的全新賽道,整體上夯實了企業智能化發展的根基。例如國有六大銀行、電力、石油等大型央企都已經建設了各類智能基礎設施,并依托該設施為企業的智能轉型提供支持。   另一方面,智能文檔處理、智能會議、知識管理、智能客服等各類企業智能應用不斷發展,全面賦能企業辦公、管理、決策、風控、營銷、服務等各個環節,促進業務的數據化與知識化、工作流程的信息化與智能化。智能基礎設施和智能應用相輔相成,智能基礎設施促進智能應用的敏捷高效,智能應用助推智能基礎設施底座的升級優化,共同推動企業智能化的加速發展。    關鍵詞十:可信落地

  可信AI由理論研究邁向工程化落地。隨著人工智能技術的快速發展,社會各界對可信AI研究已經從理論探索逐步走向工程化落地實踐。政府與研究機構相關政策和規范從宏觀指導,開始向可操作、可落地的規范演進。在法律監管層面,各政府部門的法規政策愈發重視實施和操作。例如新加坡于5月出臺世界首個AI治理測試框架及工具包;英國6月宣布首個人工智能倫理和監管的重大研究計劃。   在行業可信實踐層面,各國研究機構紛紛開展可信AI技術研究及標準制定工作,為業界提供評估準則并聚焦準入落地。如英國BSI與艾倫圖靈實驗室合作開發技術標準改善人工智能治理,美國NIST發布《人工智能偏差識別和管理標準》和《AI風險管理框架(草案)》,為企業和機構的AI風險管理提供了大量可參考的要求和指導。   在企業可信實踐層面,產業界從企業戰略管理和技術工具研發創新雙線并進,加速了可信AI在企業的落地實踐。如頭部科技企業先后發布了AI治理戰略和治理體系,成立了相關委員會和工作組,聚焦企業層面的AI治理和風險管理體系。同時可信AI技術和保障工具也在蓬勃發展,各大企業積極研發可信產品應用,也開源了一批聚焦隱私性、魯棒性、安全性、可解釋性、公平性等可信能力的測試工具。

《人工智能白皮書(2022年)》發布

人工智能技術是釋放數字化疊加倍增效應、加快戰略新興產業發展、構筑綜合競爭優勢的必然選擇。縱觀全球,國內外人工智能相關不斷強化,持續推動釋放人工智能紅利;以深度學習為代表的人工智能技術飛速發展,新技術開始探索落地應用;工程化能力不斷增強,在醫療、制造、自動駕駛等領域的應用持續深入;可信人工智能技術引起社會廣泛關注。人工智能治理受到全球高度關注,各國規制進程不斷加速,基于可信人工智能的產業實踐不斷深入。

近日,中國信息通信研究院正式發布《人工智能白皮書(2022年)》,全面回顧了2021年以來全球人工智能在政策、技術、應用和治理等方面的最新動向,重點分析了人工智能所面臨的新發展形勢及其所處的新發展階段,致力于全面梳理當前人工智能發展態勢,為各界提供參考,共同推動人工智能持續健康發展。

**政策層面,**國內外不斷強化人工智能的戰略地位,推動釋放人工智能紅利。**技術及應用層面,以深度學習為代表的人工智能技術飛速發展,新技術開始探索落地應用;工程化能力不斷增強,在醫療、制造、自動駕駛等領域的應用持續深入;可信人工智能技術引起社會廣泛關注。與此同時,治理層面工作也受到全球高度關注,各國規制進程不斷加速,基于可信人工智能的產業實踐不斷深入。 **人工智能開始邁入全新階段

白皮書認為,未來人工智能除了重視技術創新以外,還更加關注工程實踐和可信安全,這也構成了新的“三維”發展坐標,牽引人工智能技術產業邁向新的階段。

付費5元查看完整內容
北京阿比特科技有限公司