多模態表示學習旨在縮小不同模態之間的異質性差距,在利用普遍存在的多模態數據方面起著不可或缺的作用。基于深度學習的多模態表示學習由于具有強大的多層次抽象表示能力,近年來受到了廣泛的關注。在本文中,我們提供了一個全面的深度多模態表示學習的綜述論文。為了便于討論如何縮小異質性差距,根據不同模態集成的底層結構,我們將深度多模態表示學習方法分為三種框架:聯合表示、協調表示和編解碼。此外,我們回顧了該領域的一些典型模型,從傳統模型到新開發的技術。本文強調在新開發的技術的關鍵問題,如encoder-decoder模型,生成對抗的網絡,和注意力機制學習的角度來看,多通道表示,我們所知,從來沒有審核之前,即使他們已經成為當代研究的主要焦點。對于每個框架或模型,我們將討論其基本結構、學習目標、應用場景、關鍵問題、優缺點,以使新研究者和有經驗的研究者都能從中受益。最后,提出了今后工作的一些重要方向。
隨著web技術的發展,多模態或多視圖數據已經成為大數據的主要流,每個模態/視圖編碼數據對象的單個屬性。不同的模態往往是相輔相成的。這就引起了人們對融合多模態特征空間來綜合表征數據對象的研究。大多數現有的先進技術集中于如何融合來自多模態空間的能量或信息,以提供比單一模態的同行更優越的性能。最近,深度神經網絡展示了一種強大的架構,可以很好地捕捉高維多媒體數據的非線性分布,對多模態數據自然也是如此。大量的實證研究證明了深多模態方法的優勢,從本質上深化了多模態深特征空間的融合。在這篇文章中,我們提供了從淺到深空間的多模態數據分析領域的現有狀態的實質性概述。在整個調查過程中,我們進一步指出,該領域的關鍵要素是多模式空間的協作、對抗性競爭和融合。最后,我們就這一領域未來的一些方向分享我們的觀點。
盡管在深度學習方面取得了最近的進展,但大多數方法仍然采用類似“筒倉”的解決方案,專注于孤立地學習每個任務:為每個單獨的任務訓練一個單獨的神經網絡。然而,許多現實問題需要多模態方法,因此需要多任務模型。多任務學習(MTL)旨在利用跨任務的有用信息來提高模型的泛化能力。在這個綜述中,我們提供了一個最先進的在深度神經網絡的背景下MTL技術的全面觀點。我們的貢獻涉及以下方面。首先,我們從網絡架構的角度來考慮MTL。我們包括了一個廣泛的概述,并討論了最近流行的MTL模型的優缺點。其次,我們研究了解決多任務聯合學習的各種優化方法。我們總結了這些工作的定性要素,并探討了它們的共性和差異。最后,我們在各種數據集上提供了廣泛的實驗評估,以檢查不同方法的優缺點,包括基于架構和優化的策略。
概述
在過去的十年中,神經網絡在許多任務中都顯示了令人印象深刻的結果,例如語義分割[1],實例分割[2]和單目深度估計[3]。傳統上,這些任務是單獨處理的,即為每個任務訓練一個單獨的神經網絡。然而,許多現實世界的問題本質上是多模態的。例如,一輛自動駕駛汽車應該能夠檢測場景中的所有物體,定位它們,了解它們是什么,估計它們的距離和軌跡,等等,以便在它的周圍安全導航。同樣的,一個智能廣告系統應該能夠在它的視點上檢測到人們的存在,了解他們的性別和年齡,分析他們的外貌,跟蹤他們正在看的地方,等等,從而提供個性化的內容。與此同時,人類非常擅長同時解決許多任務。生物數據處理似乎也遵循多任務處理策略: 不同的處理過程似乎共享大腦中相同的早期處理層,而不是將任務分開單獨處理。上述觀察結果促使研究人員開發了多任務學習(MTL)模型,即給定一個輸入圖像可以推斷出所有所需的任務輸出。
在深度學習時代之前,MTL工作試圖對任務之間的共同信息進行建模,希望通過聯合任務學習獲得更好的泛化性能。為了實現這一點,他們在任務參數空間上放置了假設,例如:任務參數應該彼此靠近w.r.t.一些距離度量[5],[6],[16]0,[16]2,共享一個共同的概率先驗[16]1,[10],[11],[12],[13],或駐留在一個低維子空間[14],[15],[16]或流形[17]。當所有任務都是相關的[5]、[14]、[18]、[19]時,這些假設可以很好地工作,但是如果在不相關的任務之間發生信息共享,則可能導致性能下降。后者是MTL中已知的問題,稱為負轉移。為了緩解這一問題,其中一些研究人員選擇根據先前對任務的相似性或相關性的認識將任務分組。
在深度學習時代,MTL轉化為能夠從多任務監控信號中學習共享表示的網絡設計。與單任務情況下,每個單獨的任務由自己的網絡單獨解決相比,這種多任務網絡理論上給表帶來了幾個優點。首先,由于它們固有的層共享,結果內存占用大大減少。其次,由于他們明確地避免重復計算共享層中的特征,每次都要計算一次,因此他們的推理速度有所提高。最重要的是,如果相關的任務能夠分享互補的信息,或者互相調節,它們就有可能提高績效。對于前者,文獻已經為某些對任務提供了證據,如檢測和分類[20],[21],檢測和分割[2],[22],分割和深度估計[23],[24],而對于后者,最近的努力指向了那個方向[25]。這些工作導致了第一個深度多任務網絡的發展,歷史上分為軟或硬參數共享技術。
在本文中,我們回顧了在深度神經網絡范圍內的MTL的最新方法。首先,我們對MTL基于架構和優化的策略進行了廣泛的概述。對于每種方法,我們描述了其關鍵方面,討論了與相關工作的共性和差異,并提出了可能的優點或缺點。最后,我們對所描述的方法進行了廣泛的實驗分析,得出了幾個關鍵的發現。我們在下面總結了我們的一些結論,并提出了未來工作的一些可能性。
首先,MTL的性能在很大程度上取決于任務字典。它的大小、任務類型、標簽源等等,都影響最終的結果。因此,最好根據每個案例選擇合適的架構和優化策略。盡管我們提供了具體的觀察結果,說明為什么某些方法在特定設置中工作得更好,但是MTL通常可以從更深的理論理解中獲益,從而在每種情況下最大化預期收益。例如,這些收益似乎取決于多種因素,例如數據量、任務關系、噪音等。未來的工作應該嘗試分離和分析這些不同因素的影響。
其次,當使用單一MTL模型處理多個密集預測任務時,基于解碼器的架構目前在多任務性能方面提供了更多優勢,與基于編碼器的架構相比,其計算開銷有限。如前所述,這是由于基于解碼器的體系結構促進了常見的跨任務模式的對齊,這自然很適合密集的預測任務。基于編碼器的架構在密集預測任務設置中仍然具有一定的優勢,但其固有的層共享似乎更適合處理多個分類任務。
最后,我們分析了多種任務均衡策略,并分離出對任務均衡學習最有效的要素,如降低噪聲任務的權重、平衡任務梯度等。然而,許多優化方面仍然缺乏了解。與最近的研究相反,我們的分析表明避免任務之間的梯度競爭會損害性能。此外,我們的研究顯示,一些任務平衡策略仍然存在不足,突出了現有方法之間的一些差異。我們希望這項工作能促進對這一問題的進一步研究。
深度學習在許多領域都取得了重大突破和進展。這是因為深度學習具有強大的自動表示能力。實踐證明,網絡結構的設計對數據的特征表示和最終的性能至關重要。為了獲得良好的數據特征表示,研究人員設計了各種復雜的網絡結構。然而,網絡架構的設計在很大程度上依賴于研究人員的先驗知識和經驗。因此,一個自然的想法是盡量減少人為的干預,讓算法自動設計網絡的架構。因此,這需要更深入到強大的智慧。
近年來,大量相關的神經結構搜索算法(NAS)已經出現。他們對NAS算法進行了各種改進,相關研究工作復雜而豐富。為了減少初學者進行NAS相關研究的難度,對NAS進行全面系統的調查是必不可少的。之前的相關調查開始主要從NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類。這種分類方法比較直觀,但是讀者很難把握中間的挑戰和標志性作品。因此,在本次調查中,我們提供了一個新的視角:首先概述最早的NAS算法的特點,總結這些早期NAS算法存在的問題,然后為后續的相關研究工作提供解決方案。并對這些作品進行了詳細而全面的分析、比較和總結。最后,提出了今后可能的研究方向。
概述
深度學習已經在機器翻譯[1-3]、圖像識別[4,6,7]和目標檢測[8-10]等許多領域展示了強大的學習能力。這主要是因為深度學習對非結構化數據具有強大的自動特征提取功能。深度學習已經將傳統的手工設計特征[13,14]轉變為自動提取[4,29,30]。這使得研究人員可以專注于神經結構的設計[11,12,19]。但是神經結構的設計很大程度上依賴于研究者的先驗知識和經驗,這使得初學者很難根據自己的實際需要對網絡結構進行合理的修改。此外,人類現有的先驗知識和固定的思維范式可能會在一定程度上限制新的網絡架構的發現。
因此,神經架構搜索(NAS)應運而生。NAS旨在通過使用有限的計算資源,以盡可能少的人工干預的自動化方式設計具有最佳性能的網絡架構。NAS- RL[11]和MetaQNN[12]的工作被認為是NAS的開創性工作。他們使用強化學習(RL)方法得到的網絡架構在圖像分類任務上達到了SOTA分類精度。說明自動化網絡架構設計思想是可行的。隨后,大規模演化[15]的工作再次驗證了這一想法的可行性,即利用演化學習來獲得類似的結果。然而,它們在各自的方法中消耗了數百天的GPU時間,甚至更多的計算資源。如此龐大的計算量對于普通研究者來說幾乎是災難性的。因此,如何減少計算量,加速網絡架構的搜索[18-20,48,49,52,84,105]就出現了大量的工作。與NAS的提高搜索效率,NAS也迅速應用領域的目標檢測(65、75、111、118),語義分割(63、64、120),對抗學習[53],建筑規模(114、122、124),多目標優化(39、115、125),platform-aware(28日34、103、117),數據增加(121、123)等等。另外,如何在性能和效率之間取得平衡也是需要考慮的問題[116,119]。盡管NAS相關的研究已經非常豐富,但是比較和復制NAS方法仍然很困難[127]。由于不同的NAS方法在搜索空間、超參數技巧等方面存在很多差異,一些工作也致力于為流行的NAS方法提供一個統一的評估平臺[78,126]。
隨著NAS相關研究的不斷深入和快速發展,一些之前被研究者所接受的方法被新的研究證明是不完善的。很快就有了改進的解決方案。例如,早期的NAS在架構搜索階段從無到有地訓練每個候選網絡架構,導致計算量激增[11,12]。ENAS[19]提出采用參數共享策略來加快架構搜索的進程。該策略避免了從頭訓練每個子網,但強制所有子網共享權值,從而大大減少了從大量候選網絡中獲得性能最佳子網的時間。由于ENAS在搜索效率上的優勢,權值共享策略很快得到了大量研究者的認可[23,53,54]。不久,新的研究發現,廣泛接受的權重分配策略很可能導致候選架構[24]的排名不準確。這將使NAS難以從大量候選架構中選擇最優的網絡架構,從而進一步降低最終搜索的網絡架構的性能。隨后DNA[21]將NAS的大搜索空間模塊化成塊,充分訓練候選架構以減少權值共享帶來的表示移位問題。此外,GDAS-NSAS[25]提出了一種基于新的搜索架構選擇(NSAS)損失函數來解決超網絡訓練過程中由于權值共享而導致的多模型遺忘問題。
在快速發展的NAS研究領域中,類似的研究線索十分普遍,基于挑戰和解決方案對NAS研究進行全面、系統的調研是非常有用的。以往的相關綜述主要根據NAS的基本組成部分: 搜索空間、搜索策略和評估策略對現有工作進行分類[26,27]。這種分類方法比較直觀,但不利于讀者捕捉研究線索。因此,在本次綜述查中,我們將首先總結早期NAS方法的特點和面臨的挑戰。基于這些挑戰,我們對現有研究進行了總結和分類,以便讀者能夠從挑戰和解決方案的角度進行一個全面和系統的概述。最后,我們將比較現有的研究成果,并提出未來可能的研究方向和一些想法。
智能視頻監控(IVS)是當前計算機視覺和機器學習領域的一個活躍研究領域,為監控操作員和取證視頻調查者提供了有用的工具。人的再識別(PReID)是IVS中最關鍵的問題之一,它包括識別一個人是否已經通過網絡中的攝像機被觀察到。PReID的解決方案有無數的應用,包括檢索顯示感興趣的個體的視頻序列,甚至在多個攝像機視圖上進行行人跟蹤。文獻中已經提出了不同的技術來提高PReID的性能,最近研究人員利用了深度神經網絡(DNNs),因為它在類似的視覺問題上具有令人信服的性能,而且在測試時執行速度也很快。鑒于再識別解決方案的重要性和廣泛的應用范圍,我們的目標是討論在該領域開展的工作,并提出一項最先進的DNN模型用于這項任務的調查。我們提供了每個模型的描述以及它們在一組基準數據集上的評估。最后,我們對這些模型進行了詳細的比較,并討論了它們的局限性,為今后的研究提供了指導。
最新的技術進步提高了交通運輸的質量。新的數據驅動方法為所有基于控制的系統(如交通、機器人、物聯網和電力系統)帶來了新的研究方向。將數據驅動的應用與運輸系統相結合在最近的運輸應用程序中起著關鍵的作用。本文綜述了基于深度強化學習(RL)的交通控制的最新應用。其中,詳細討論了基于深度RL的交通信號控制(TSC)的應用,這在文獻中已經得到了廣泛的研究。綜合討論了TSC的不同問題求解方法、RL參數和仿真環境。在文獻中,也有一些基于深度RL模型的自主駕駛應用研究。我們的調查廣泛地總結了這一領域的現有工作,并根據應用程序類型、控制模型和研究的算法對它們進行了分類。最后,我們討論了基于深度可編程邏輯語言的交通應用所面臨的挑戰和有待解決的問題。
題目: Image Segmentation Using Deep Learning: A Survey
摘要:
圖像分割是圖像處理和計算機視覺領域的一個重要課題,其應用領域包括場景理解、醫學圖像分析、機器人感知、視頻監控、增強現實和圖像壓縮等。文獻中已經發展了各種圖像分割算法。最近,由于深度學習模型在廣泛的視覺應用中取得了成功,已經有大量的工作致力于開發使用深度學習模型的圖像分割方法。在本次調查中,我們對撰寫本文時的文獻進行了全面的回顧,涵蓋了語義和實例級分割的廣泛的開創性著作,包括全卷積像素標記網絡,編碼器-解碼器架構,多尺度和基于金字塔的方法,遞歸網絡,視覺注意力模型,以及在對抗性環境下的生成模型。我們調查了這些深度學習模型的相似性、優勢和挑戰,研究了最廣泛使用的數據集,報告了性能,并討論了該領域未來的研究方向。
圖神經網絡是解決各種圖學習問題的有效的機器學習模型。盡管它們取得了經驗上的成功,但是GNNs的理論局限性最近已經被揭示出來。因此,人們提出了許多GNN模型來克服這些限制。在這次調查中,我們全面概述了GNNs的表達能力和可證明的強大的GNNs變體。
簡介:
近年來,由于機器學習(ML)/深度學習(DL)技術使用多維醫學圖像,在從一維心臟信號的心臟驟停的預測到計算機輔助診斷(CADx)的各種醫療保健應用中的卓越性能,見證了機器學習(ML)/深度學習(DL)技術的廣泛采用。盡管ML / DL的性能令人印象深刻,但對于ML / DL在醫療機構中的健壯性仍然存有疑慮(由于涉及眾多安全性和隱私問題,傳統上認為ML / DL的挑戰性很大),尤其是鑒于最近的研究結果表明ML / DL容易受到對抗性攻擊。在本文中,我們概述了醫療保健中各個應用領域,這些領域從安全性和隱私性的角度利用了這些技術,并提出了相關的挑戰。此外,我們提出了潛在的方法來確保醫療保健應用程序的安全和隱私保護機器學習。最后,我們提供了有關當前研究挑戰的見解以及未來研究的有希望的方向。
內容大綱:
題目: Deep Representation Learning in Speech Processing: Challenges, Recent Advances, and Future Trends
簡介: 傳統上,語音處理研究將設計人工工程聲學特征(特征工程)的任務與設計有效的機器學習(ML)模型以做出預測和分類決策的任務分離為一個獨立的問題。這種方法有兩個主要缺點:首先,手工進行的特征工程很麻煩并且需要人類知識。其次,設計的功能可能不是最適合當前目標的。這引發了語音社區中采用表示表達學習技術的最新趨勢,該趨勢可以自動學習輸入信號的中間表示,從而更好地適應手頭的任務,從而提高性能。表示學習的重要性隨著深度學習(DL)的發展而增加,在深度學習中,表示學習更有用,對人類知識的依賴性更低,這有助于分類,預測等任務。本文的主要貢獻在于:通過將跨三個不同研究領域(包括自動語音識別(ASR),說話者識別(SR)和說話者情緒識別(SER))的分散研究匯總在一起,對語音表示學習的不同技術進行了最新和全面的調查。最近針對ASR,SR和SER進行了語音復習,但是,這些復習都沒有集中于從語音中學習表示法,這是我們調查旨在彌補的差距。
題目: Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
簡介: 來自工廠和社區的傳感器和智能設備正在生成大量數據,而不斷增長的計算能力正在將計算和服務的核心從云端驅動到網絡邊緣。作為廣泛改變人們生活的重要推動力,從人臉識別到智能工廠和城市,基于人工智能(尤其是深度學習,DL)的應用程序和服務的發展正在蓬勃發展。但是,由于效率和延遲問題,當前的云計算服務體系結構阻礙了“為每個地方的每個人和每個組織提供人工智能”的愿景。因此,使用在數據源附近的網絡邊緣的資源來釋放DL服務已經成為一種理想的解決方案。因此,旨在通過邊緣計算促進DL服務部署的邊緣智能已引起了廣泛關注。此外,作為人工智能的代表技術的DL可以集成到邊緣計算框架中,以構建用于動態,自適應邊緣維護和管理的智能邊緣。關于互惠互利的邊緣智能和智能邊緣,本文介紹和討論:1)兩者的應用場景; 2)實際的實現方法和使能技術,即定制邊緣計算框架中的DL訓練; 3)現有挑戰以及更普遍,更精細的智能化趨勢。通過整合散布在通信,網絡和DL領域的信息,可以幫助讀者理解支持技術之間的聯系,同時促進對邊緣智能與智能邊緣融合的進一步討論。