最近的研究表明,神經網絡學習的許多重要方面都發生在訓練的最早階段。例如,稀疏的、可訓練的子網絡出現(Frankle et al., 2019),梯度下降移動到一個小的子空間(guri - ari et al., 2018),網絡經歷一個關鍵時期(Achille et al., 2019)。在這里,我們檢查了深層神經網絡在早期訓練階段所經歷的變化。在這些早期的訓練迭代中,我們對網絡狀態進行了廣泛的測量,并利用Frankle等人(2019)的框架來定量探測權重分布及其對數據集各個方面的依賴。我們發現,在這個框架中,深度網絡在保持符號的同時,對隨機權值的重新初始化不夠健壯,并且即使經過幾百次迭代,權值的分布仍然是非獨立的。盡管存在這種行為,使用模糊輸入或輔助自監督任務的預訓練可以近似監督網絡中的變化,這表明這些變化并不是固有的標簽依賴,盡管標簽顯著地加速了這一過程。綜上所述,這些結果有助于闡明在學習的關鍵初始階段所發生的網絡變化。
由于硬件資源有限,深度學習模型的訓練目標通常是在訓練和推理的時間和內存限制下最大化準確性。在這種情況下,我們研究了模型大小的影響,關注于計算受限的NLP任務的Transformer模型:自監督的預訓練和高資源機器翻譯。我們首先展示了,盡管較小的Transformer模型在每次迭代中執行得更快,但更廣、更深入的模型在顯著更少的步驟中收斂。此外,這種收斂速度通常超過了使用更大模型的額外計算開銷。因此,計算效率最高的訓練策略是反直覺地訓練非常大的模型,但在少量迭代后停止。
這導致了大型Transformer 模型的訓練效率和小型Transformer 模型的推理效率之間的明顯權衡。然而,我們表明大模型比小模型在壓縮技術(如量化和剪枝)方面更健壯。因此,一個人可以得到最好的兩個好處: 重壓縮,大模型比輕壓縮,小模型獲得更高的準確度。
//www.zhuanzhi.ai/paper/4d7bcea8653fcc448137766511ec7d8a
概述:
在當前的深度學習范式中,使用更多的計算(例如,增加模型大小、數據集大小或訓練步驟)通常會導致更高的模型準確度(brock2018large;raffel2019exploring)。最近自監督預訓練的成功進一步論證了這種趨勢經模型。因此,計算資源日益成為提高模型準確度的關鍵制約因素。這個約束導致模型訓練的(通常是隱含的)目標是最大化計算效率:如何在固定的硬件和訓練時間下達到最高的模型準確度。
最大化計算效率需要重新考慮關于模型訓練的常見假設。特別是,有一個典型的隱式假設,即模型必須經過訓練直到收斂,這使得較大的模型在有限的計算預算下顯得不太可行。我們通過展示以收斂為代價來增加模型大小的機會來挑戰這一假設。具體地說,我們表明,訓練Transformer 模型的最快方法(vaswani2017attention)是大幅度增加模型大小,但很早停止訓練。
在我們的實驗中,我們改變了Transformer模型的寬度和深度,并在自監督的預訓練(RoBERTa (liu2019roberta)在Wikipedia和BookCorpus上訓練)和機器翻譯(WMT14英語→法語)上評估了它們的訓練時間和準確性。對于這些任務,我們首先展示了更大的模型比更小的模型在更少的梯度更新中收斂到更低的驗證錯誤(第3節)。此外,這種收斂速度的增加超過了使用更大模型所帶來的額外計算開銷——計算效率最高的模型是非常大的,并且遠遠不能收斂(例如,圖2,左)。我們還表明,收斂的加速主要是參數計數的函數,只有模型寬度、深度和批大小的微弱影響。
雖然較大的模型訓練速度更快,但它們也增加了推理的計算和內存需求。這種增加的成本在現實應用中尤其成問題,推理成本占訓練成本的主要比例(jouppi2017datacenter;crankshaw2017clipper;metz2017tpu)。然而,對于RoBERTa來說,這種明顯的權衡可以與壓縮相協調:與小型模型相比,大型模型在壓縮方面更加健壯(第4節)。因此,使用可比較的推理成本,大型重壓縮的模型優于小型輕壓縮的模型(例如,圖2,右)。
題目: Improving Deep Learning Training and Inference with Dynamic Hyperparameter Optimization
簡介:
在過去的十年中,深度學習證明了計算機視覺和自然語言處理所帶來的挑戰的最新準確性,從而使這些領域發生了革命性變化。深度學習模型現在是自動駕駛,醫學成像和神經機器翻譯等應用程序的基本構建塊。但是,在生產中部署這些模型時,仍然存在許多挑戰。研究人員和從業人員必須解決各種各樣的問題,包括如何有效地設計,培訓和部署資源密集型深度學習模型,以及如何在確保對變化條件的魯棒性的同時使這些方法自動化。本文提供并評估了提高深度學習訓練和推理效率以及底層系統對環境變化的魯棒性的新方法。我們通過關注為優化模型的準確性和資源使用而優化的許多超參數來解決這些問題。這些超參數包括模型架構的選擇,訓練數據集,優化算法,優化算法的超參數(例如學習率和動量)以及訓練時間預算。當前,在實踐中,幾乎所有超參數在訓練之前都進行了一次調整,此后保持不變,然而最佳的超參數值會隨時間變化(例如,隨著訓練的進行或替換用于推理的硬件時)。我們將動態調整應用于傳統上被認為是靜態的超參數。通過三個案例研究,我們表明,使用運行時信息來動態適應傳統上靜態的超參數可以提高機器學習訓練和推理的效率。 首先,我們提出并分析Selective-Backprop,這是一種新的重要采樣方法,它以在線方式對高損失示例進行優先排序。在Selective-Backprop中,被認為具有挑戰性的示例是可調超參數。通過優先處理這些具有挑戰性的示例,Selective-Backprop可以將給定的目標錯誤率訓練到比靜態方法快3.5倍的目標。接下來,我們探索AdaptSB,它是Selective-Backprop的變體,可以動態調整我們對具有挑戰性的示例進行優先級排序的方式。在“選擇性反向傳播”中,分配給難度不同示例的優先級保持不變。在AdaptSB中,我們將分配給不同類別示例的優先級視為可調超參數。通過對數據集和訓練階段動態地調整示例優先級,AdaptSB在出現標簽錯誤的數據集上表現優于Selective-Backprop。 最后,我們提出并分析了Mainstream,這是一種視頻分析系統,可讓并發應用共享共享邊緣資源,以最大程度地提高匯總結果質量。在Mainstream中,我們認為應用程序共享的程度是一個可調參數。 Mainstream在部署時使用更專業的DNN自動確定正確的權衡方案,以提高每幀的準確性并保留更多的非專業基礎模型。結果顯示,與靜態ap方法相比,Mainstream將平均事件檢測F1分數提高了多達87倍。
交叉熵是圖像分類模型監督訓練中應用最廣泛的損失函數。在這篇論文中,我們提出了一種新的訓練方法,在不同架構和數據擴充的監督學習任務中,它的表現始終優于交叉熵。我們修改了批量對比損失,這是最近被證明在自監督學習強大表示是非常有效的。我們能夠比交叉熵更有效地利用標簽信息。在嵌入空間中,將同一類的點聚在一起,同時將不同類的樣本聚在一起。除此之外,我們還利用了關鍵的成分,如大批量和標準化嵌入,這些已經被證明有利于自監督學習。在ResNet-50和ResNet-200上,我們的交叉熵性能都超過了1%,在使用自動增廣數據增強的方法中,我們設置了78.8%的最新水平。這一損失也清楚地表明,在校準和準確性方面,對標準基準的自然損壞具有魯棒性。與交叉熵相比,我們的監督對比損失更穩定的超參數設置,如優化或數據擴充。
我們研究了時間差分(TD)學習中泛化與干涉之間的關系。干涉被定義為兩個不同梯度的內積,表示它們的對齊。這個量從對神經網絡、參數共享和動態學習的各種觀察中產生。我們發現,TD很容易導致低干擾、欠泛化參數,而在監督學習中,這種效應似乎是相反的。我們假設,原因可以追溯到相互作用之間的動態干擾和bootstrapping。這是由幾個觀察:支持經驗之間的負面關系泛化間隙和干涉TD,引導對干擾的負面影響和當地的一致性目標,和信息的傳播速度之間的對比在TD(0)和TD(λ)和回歸蒙特卡羅政策評估等任務。我們希望這些新的發現能夠指導未來更好的引導方法的發現。
由于硬件資源有限,訓練深度學習模型的目標通常是在訓練和推理的時間和記憶約束下使準確性最大化。在這種情況下,我們研究了模型大小的影響,重點研究了受計算限制的NLP任務的Transformer模型:自我監督的預訓練和高資源機器翻譯。我們首先表明,盡管較小的Transformer模型在每次迭代中執行得更快,但是更廣泛和更深入的模型在更少的步驟中收斂。此外,這種收斂速度通常超過使用大型模型的額外計算開銷。因此,最具計算效率的訓練策略是反直覺地訓練非常大的模型,但是在少量的迭代之后停止。
這導致大型Transformer 模型的訓練效率與小型Transformer 模型的推理效率之間存在明顯的權衡。然而,我們證明大型模型比小型模型對量化和剪枝等壓縮技術有更強的魯棒性。因此,我們可以同時利用兩個方面的優勢:高度壓縮的大型模型比輕度壓縮的小型模型獲得更高的精度。
題目: The Break-Even Point on Optimization Trajectories of Deep Neural Networks
摘要:
深度神經網絡的早期訓練對其最終性能至關重要。在這項工作中,我們研究了在訓練初期使用的隨機梯度下降(SGD)超參數如何影響優化軌跡的其余部分。我們認為在這條軌跡上存在“盈虧平衡點”,超過這個平衡點,損失曲面的曲率和梯度中的噪聲將被SGD隱式地正則化。特別是在多個分類任務中,我們證明了在訓練的初始階段使用較大的學習率可以減少梯度的方差,改善梯度的協方差條件。從優化的角度來看,這些效果是有益的,并且在盈虧平衡點之后變得明顯。補充之前的工作,我們還表明,使用低的學習率,即使對于具有批處理歸一化層的神經網絡,也會導致損失曲面的不良適應。簡而言之,我們的工作表明,在訓練的早期階段,損失表面的關鍵屬性受到SGD的強烈影響。我們認為,研究確定的效應對泛化的影響是一個有前途的未來研究方向。