亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

由于全球定位系統在室內容易受到干擾和失去覆蓋范圍,因此在全球定位系統缺失的環境中進行可靠導航仍然是自主無人系統面臨的一項挑戰。本研究通過將卷積神經網絡(CNN)與視覺傳感器集成,研究如何在不依賴 GPS 的情況下實現實時姿態估計,從而解決無人地面車輛(UGV)面臨的這一挑戰。針對位置和航向估算實施了雙 CNN 架構,并在具有相應姿態的大量圖像數據集上進行了訓練。通過與改進的勢場算法集成,實現了周期性漂移估計和校正。其中一個主要貢獻是用于漂移校正的世界表示調整方法,該方法可根據 CNN 估計值動態調整航點位置。利用這種方法,在受控環境中實現了連續多圈的成功導航,大大提高了沒有漂移校正的基線性能。這項研究的結果表明,通過這種方法可以大大降低自主導航系統對全球定位系統的依賴性,從而有可能提高無人系統對電子戰戰術的應變能力,使其能夠在有爭議的環境中持續運行。

美海軍部(DON)無人作戰框架強調了海軍部 “投資于先進自主和無人系統 ”的承諾。隨著這些技術的進步和實施,無人系統對可靠定位能力的依賴程度也在增加。然而,在干擾和欺騙等電子攻擊成為普遍威脅的有爭議環境中,期望全球定位系統(GPS)成為可靠的定位手段變得不那么可行。此外,在室內環境或衛星能見度有限的區域工作時,GPS 的可靠性也會降低。隨著無人駕駛系統的使用日益增多,在 GPS 無法使用或不可靠的情況下,有必要提供替代解決方案。

隨著無人駕駛系統的分布越來越廣,相互連接越來越緊密,GPS 拒絕或欺騙所造成的脆弱性也隨之加劇。定位中的單點故障會產生連鎖效應,降低整個系統的能力并增加風險。因此,為自主輪式無人飛行器探索可靠、精確的導航技術至關重要,這種技術可在 GPS 信號被屏蔽的環境中有效運行,確保無人駕駛行動在有爭議的復雜場景中繼續取得成功。

這項研究旨在為在室內環境或 GPS 信號不可靠或不可用的地區運行的無人潛航器開發一種穩健的導航解決方案。該方法將利用兩個主要來源的數據:車輪編碼器和視覺傳感器。車輪編碼器數據將使用死算模型進行處理,而 CNN 將用于分析視覺傳感器數據。通過將這些技術相結合,該系統將實現無需 GPS 的同步自主導航。這種方法的一個關鍵方面是實時激活 CNN,CNN 可以解釋環境的獨特特征,并相應地引導 UGV。

這項研究的范圍包括利用深度學習技術為 UGV 開發無 GPS 定位和導航解決方案。將通過 P3-DX Pioneer 機器人系統在室內實驗室環境中使用模擬 UGV 進行廣泛的驗證和測試。不過,某些領域被認為不屬于本研究的范圍。其中包括路徑規劃算法的開發,因為車輛將使用現有的反應式自主方法。此外,除視覺數據外,也不會考慮探索其他傳感器模式。研究重點將不是在有移動障礙物的高動態環境中進行導航。預計面臨的主要技術挑戰是優化計算時間以實現實時性能、減少長時間漂移以及在激烈機動過程中保持定位精度。在項目限制條件下,將盡可能利用和調整現有技術和算法,以最大限度地提高魯棒性。

本論文共分五章,每一章都側重于研究的一個特定方面。第 2 章:“背景 ”通過介紹和解釋與論文工作相關的基本概念,為研究奠定了基礎。本章包括對該領域現有文獻的全面回顧,重點介紹了當前的技術,并指出了本研究要解決的差距。

第 3 章:“方法與實驗設計 ”介紹了論文工作中采用的方法和手段。它詳細描述了實驗中使用的硬件組件和實施的具體算法。本章還討論了實驗設置、數據收集過程以及用于評估所提解決方案性能的評價指標。

第 4 章:“結果與分析 ”主要評估本研究中開發的 CNN 的性能。本章介紹了獲得的實驗結果,并對結果進行了深入分析。本章還包括圖表等可視化內容,以支持對結果的解釋。本章討論了所提方法的優勢和局限性,并將結果與文獻中的現有方法進行了比較。

第 5 章:“結論與未來工作 ”總結了論文研究的主要發現和貢獻。本章強調了這項工作的意義及其對自主導航和定位領域的潛在影響。此外,本章還確定了未來的研究領域,并為進一步改進和擴展所提出的方法提供了建議。

最后,為簡潔起見,“UGV ”和 “機器人 ”這兩個術語在本論文中交替使用。

圖 3.8. 增強型數據存儲過程的可視化表示,這是 CNN 訓練的準備階段。這既減少了圖像所需的存儲空間,又為 CNN 訓練過程保持了適當的預期輸出響應。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

隨著無人駕駛飛行器(UAV)日益成為監視和偵察(S&R)行動不可或缺的一部分,其易受網絡威脅的特性給行動的完整性帶來了巨大風險。當前的網絡安全協議往往無法解決無人機行動在監視和偵察(S&R)環境中的獨特脆弱性和挑戰,凸顯了專門網絡安全戰略的空白。本研究采用 MITRE ATTACK 框架來加強網絡安全方法,保護無人機免受不斷變化的網絡威脅。本論文通過基于場景的分析,將現有漏洞與綜合戰術、技術和程序(TTPs)進行映射。假設和實際的 S&R 操作案例研究證明了建議的網絡安全策略的適用性,驗證了這些策略在減輕特定威脅方面的有效性,以及制定更具體的網絡安全協議的必要性。研究結果提倡在無人機網絡安全方面不斷創新并保持警惕,這有助于保護執行 S&R 任務的無人機,并強調了無人機操作中網絡安全挑戰的動態性質。

本論文要解決的核心問題是,在 S&R 場景中運行的無人機在專門的網絡安全戰略方面存在巨大差距。本研究利用 MITRE ATTACK 框架,致力于發現和設計增強型網絡安全方法,以保護無人機在執行 S&R 任務中的重要貢獻,抵御不斷變化的網絡威脅。本研究對 S&R 領域無人機面臨的普遍網絡安全漏洞進行了深入研究。這項研究旨在將這些漏洞與 MITRE ATTACK 框架中概述的綜合戰術、技術和程序(TTPs)進行映射。為了驗證所提出的網絡安全策略的有效性和適用性,論文將結合模擬 S&R 行動的案例研究。假設和實際場景說明了如何根據 MITRE ATTACK 框架調整和應用網絡安全措施,以減輕不同 S&R 環境下的特定網絡威脅。納入這些場景旨在闡明在基于無人機的 S&R 行動中制定嚴格的網絡安全措施所面臨的現實挑戰和可行性,為此類協議在實際環境中的執行和有效性提供重要見解。

本文共分六章。第 2 章包括無人機在各種監視和偵察任務中的一般使用背景、有關 MITRE ATTACK 框架的信息、在監視和偵察任務中使用無人機的研究文獻綜述以及無人機和 S&R 場景中的網絡安全狀況。第 3 章分析了對無人機的常見網絡攻擊,研究了這些威脅對任務的影響,并討論了對監視和偵察任務中的無人機的潛在影響。第 4 章重點介紹 MITRE 框架,通過該框架確定相關戰術、技術和程序 (TTP),并在 S&R 行動中制定緩解策略。第 5 章探討了假設和實際案例研究,在各種 S&R 場景中實施該框架。最后,第 6 章回顧了使用 MITRE 框架的局限性和挑戰,總結了主要發現,并給出了一些最終想法。

付費5元查看完整內容

這項工作的目標是開發一個與自適應交互控制器相結合的有人無人編隊協同(MUMT)框架,使單個飛行員能夠與多個無人機(UAV)協同工作,同時最大限度地提高人類代理的性能,并將其精神負擔保持在可接受的水平。通過使用混合主動交互(MII)概念來解決這一問題,該概念根據代理的當前條件和能力在代理之間分擔任務。MII 借助生理計算來確定人類代理的精神狀態,并采用自動規劃技術在不確定情況下通過順序決策來控制交互。研究結果表明,與非適應性實驗條件相比,利用主觀和生理特征測量的工作量明顯減少,而人類代理在適應性實驗條件下的表現也明顯提高。這些研究結果表明了所提出的自適應交互控制方法如何在提高性能的同時減少操作員的工作量,從而為實現更高效、更強大的 MUM-T 鋪平了道路。

有人-無人編隊協同(MUM-T)可以理解為多個代理的合作團隊:在關鍵任務情況下,多個無人駕駛飛行器(UAV)和可能的多個有人駕駛飛機共同行動。因此,通過這種屬于混合主動交互(MII)框架的團隊合作,為未來人類與多無人機的交互提出了一個新的視角。為了設計混合動力系統,了解是什么因素影響了人類操作員的(精神)狀態、決策能力和表現,尤其是在危急情況下,這一點非常重要。從 MII 的角度來看,我們認為人類操作員(飛行員)并不是一個萬無一失的團隊操作員。例如,退化的心理狀態可能會削弱人類代理在任務執行過程中的能力。因此,在本論文工作中,我們研究了生理計算和人工智能算法,用于估算人類飛行員在困難任務條件下與無人機團隊互動時的心理狀態(如心理工作量),以便調整代理的互動,從而提高性能。例如,根據人類飛行員當前的(精神)狀態和任務子任務的優先級,可以選擇是否觸發無人機請求。

因此,為了實現本論文的目標,這項工作首先要了解和評估人類飛行員與無人機互動時的心理狀態。為此,我們開發了一個在搜救任務中使用 MUM-T 的場景,讓參與者扮演一名與三架無人機合作的飛行員。在第一次實驗活動中,我們設計了誘發高強度和低強度腦力勞動的任務,并通過自我報告、行為和生理測量(即大腦、心臟和眼球運動特征)對其進行評估。通過第一次活動,我們:(i) 根據生理信號確定了腦力勞動負荷的特征--發現腦力勞動負荷對所有測量指標都有顯著影響;(ii) 提出了不同的分類管道,在單獨使用心臟特征或結合使用大腦和眼球運動特征時,分類準確率平均從最佳的 75% 到最低的 59.8%不等。

然后,在這些結果的基礎上,本論文工作的重點是構建一個順序決策系統,該系統能夠通過分類器的輸出監測人的精神狀態,并選擇適當的行動來調整互動,以最大限度地提高人的表現,最終提高任務成果。考慮到人類心理狀態的部分可觀測性和此類系統的非確定性,我們在部分可觀測馬爾可夫決策過程(POMDP)框架下構建了這項工作。POMDP 模型旨在控制互動,其參數是利用第一次實驗活動中收集的所有數據和相關分類結果近似得出的。在模擬中對所獲得的政策進行了評估。

最后,本論文工作的結論是在第二次實驗活動中對這種基于 POMDP 的交互控制策略進行性能和心理工作量管理方面的評估。在這次實驗中,所有開發項目都進行了整合和在線測試:生理特征的提取和處理、人類精神狀態的估計以及交互的適應。主觀結果顯示,與非自適應交互系統相比,在使用自適應方法時,參與者明顯感覺工作量減少。在自適應條件下,他們的飛行得分也明顯提高。這些研究結果表明了基于 POMDP 的自適應交互控制如何在提高性能的同時減少操作員的工作量,從而為實現更高效、更強大的 MUM-T 鋪平道路。除了幾篇短文外,本論文還發表了一篇期刊論文和一篇會議論文。

關于論文的結構,前三章是與這項工作相關的最新成果。因此,第一章介紹了人機交互(HRI)的概念,并討論了可能的交互渠道、HRI 如何定義與交互相關的自主性以及人工代理的局限性。人機交互的概念在 “有人-無人團隊”(Manned-Un-Manned Teaming)的背景下得到了進一步發展,并深入探討了混合主動交互和生理計算如何有助于人機交互。第二章回顧了心理狀態評估文獻,并定義了心理工作量。此外,還詳細介紹了與人類心理工作量相關的生理變化。隨后是對生理計算方法的解釋。最后,回顧了當前人機交互中的心理工作量評估研究,并重點介紹了未來的發展。接下來,第三章概述了人工智能(AI)背景下的規劃,并介紹了各種規劃挑戰和影響規劃模型選擇的因素。這延伸到了概率規劃,特別是部分可觀測馬爾可夫決策過程(POMDP)。最后,論文介紹了解決 POMDP 的各種方案。

第四章是論文的貢獻部分。它首先定義了本論文的研究范圍和目標。然后詳細介紹了實驗設計、實施、采集、處理和分析工具。本章還介紹了用于實時處理和分析眼動跟蹤數據的應用程序。第五章詳細介紹了首次實驗活動以及心理工作量估算的相關結果。本章首先介紹了第一次實驗活動,然后介紹了數據的收集和處理。此外,還研究了不同的驗證技術以及時間對生理數據的影響。最后,對結果進行了分析和討論。第六章概述了根據從第一次實驗活動中獲得的知識制定規劃框架的過程。隨后是解決規劃模型的技術問題,以獲得控制 MUM-T 互動的策略。最后,使用內部模擬器對生成的策略和隨機策略進行了比較。隨后,第七章旨在驗證所提出的 MUM-T 自適應交互方法。該章詳細介紹了利用所有創建模塊進行自適應交互的閉環設計。最后,介紹了第二次實驗活動,本章以實驗結果及其討論結束。最后,第八章以總體結論、每個貢獻的具體發現以及對未來方向和改進的展望結束論文。

付費5元查看完整內容

無人水面艦艇(USV)的編隊控制算法通常需要利用射頻(RF)通信網絡來確定艦艇之間的距離和方位,以保持編隊狀態。無論是 USV 之間還是每艘 USV 與集中式編隊控制器之間的射頻信號,都很容易被敵方行動探測和破壞,因此無法采用典型的編隊控制方法。這項研究通過模擬具有計算機視覺能力的 USV,使現有的控制算法分散化,這些 USV 能夠確定與蜂群中其他 USV 的距離和方位。將對分布式控制算法的性能進行分析,以確定具有不同視場的模擬攝像機的影響,以及不同的所需蜂群行為。

付費5元查看完整內容

無人水面艦艇(USV)通常依靠全球定位系統(GPS)和射頻(RF)通信進行導航和多車協調。在戰時環境中,全球定位系統和無線電信號屏蔽對 USV 的有效導航和控制提出了挑戰。本論文研究了使用低成本人工智能(AI)立體相機作為傳感器,實現 USV 的無 GPS 和 RF 導航與協調。這些相機還可用于對水面船只進行分類和定位。我們使用安裝在多艘 Mokai USV 上的 OAK-D AI 攝像機進行了實驗。對神經網絡 (NN) 模型進行了訓練,以識別兩個對象類別:Mokai USV 和其他船只。利用開源 Python 庫,該模型被直接加載到攝像頭上,并集成到機器人操作系統 (ROS) 軟件中,以提取檢測到的物體的相對姿態信息。為了分析該模型的有效性,我們在未見過的視頻上以及使用 Mokai USV 和其他水面艦艇進行的現場實驗中對 NN 進行了測試。將攝像機估計的物體定位與在實驗室環境中通過物理驗證收集的物體地面實況位置進行了比較。最后,還探討了特定相機硬件和立體視覺在此應用中的局限性,以評估其進一步開發的可行性。

付費5元查看完整內容

無人潛航器(UUV)為在水下領域實現目標提供了一種謹慎的手段,這在灰色區域行動中至關重要。然而,無人潛航器也面臨著巨大的操作挑戰,如電池壽命有限、有效載荷容量受限以及存在敵對威脅等。為解決這些問題,建議開發一種整合了線性規劃和在線優化的調度工具。該工具受論文 "灰色區域環境中的路由優化 "中路由優化方法的啟發,旨在為 UUV 安排后勤支持。該工具旨在通過考慮對手的最新位置來規避移動中的對手,同時還能根據對手的具體要求確定服務任務的優先級。通過利用一系列適應最新信息的路徑計算,工具確定最佳路線。根據該工具在模擬場景中提供可行解決方案的能力對其有效性進行了評估,在該模擬場景中,一艘后勤保障船在一個由隨機移動的敵方船只巡邏的區域內為一支 UUV 艦隊提供服務。此外,評估還包括該工具在不同 UUV 艦隊規模下的最優性能和計算復雜性。本文致力于在對手威脅下改進后勤路由,提高灰色區域環境中的軍事效率。

圖 3.1. 南海假想行動區地圖片段。

在和平與戰爭的傳統界限之間,存在著一個模糊不清的領域,國家行為體及其軍事力量經常利用國際法和國際準則中的漏洞。這些區域通常被稱為灰色地帶(GZs),這些實體在其中努力實現其目標,而不引起全面的軍事反應。灰色地帶的概念雖然并不新鮮,但近年來由于地緣政治格局的不斷變化而日益突出。無人自主飛行器的進步和廣泛使用大大增強了軍事部隊開展 GZ 行動的能力。與有人駕駛飛行器相比,無人駕駛飛行器沒有人類操作員,這有助于提高可信度,降低風險。在水下戰爭領域,無人潛航器已成為現代軍隊實現 GZ 目標的重要工具。

盡管無人潛航器技術不斷進步,但仍受到當前技術限制的制約。它們的電池容量有限、有效載荷能力受限、需要維護和修理,因此往往需要人工干預后勤工作,從而為表面上的無人系統引入了有人操作的一面。本論文旨在通過設計一種工具來改進 UUV 的物流路由,從而加強 UUV 服務的路由和調度。其目的是確定后勤保障船(LSV)進入 UUV 的最佳路徑和服務時間,同時應對隨機移動對手的挑戰,這是 GZ 地區普遍存在的問題。本論文借鑒 Chu(2023 年)開發的混合整數線性規劃(MILP)路由優化工具,結合在線優化(OO)原理,開發出一種可迭代更新其解決方案的工具,以適應對手的動態移動。這種能力有助于避免被發現,而這是避免 GZ 中潛在沖突的重要策略。

研究伊始,我們首先提出了 MILP 模型。在 MILP 框架內,我們的模型利用平均延遲作為主要指標,在整個網絡中有效生成最優調度建議。通過關注平均延遲時間的最小化,我們的模型旨在促進 UUV 的及時訪問以提供高效服務,同時規劃路線以規避對手。鑒于 UUV 可能有不同的服務時間要求和分配優先級,我們設計的模型在生成最佳路由和調度計劃時考慮了這些因素。在該模型中,用戶可以指定指定的服務時間窗口和持續時間,并根據以下四個不同級別分配服務優先級:(1) 電池更換;(2) 常規維護;(3) 存儲更換;(4) 關鍵維護。

為了實現 OO,我們采用了 Marler(2022 年)提出的決策過程,將敵方移動下的后勤路由概念化為以下五個步驟:

步驟 1. 獲取最新戰術信息。

步驟 2. 生成路由計劃。

步驟 3. 前往推薦的 UUV。

步驟 4. 執行服務任務。

步驟 5. 重復上述步驟,直至達到終止標準。

通過時間索引,模型可以在每個時間步驟中利用對手位置的最新數據和上一步驟的模型狀態進行重新優化。這種方法有效地實現了五步決策過程,從而體現了 OO 的原則。

為了改善用戶體驗,我們設計的工具將所有輸出整合到統一的瀏覽器界面中,并通過交互式地圖進一步加強用戶控制和參與。為了證明該工具的計算可行性和功能性,我們進行了一次概念驗證模擬,讓一艘 LSV 在 120 x 120 海里(nm)的作戰區域內,為由 10 艘 UUV 組成的艦隊提供服務,并與三個對手進行對抗。當 LSV 穿過模型時,我們的算法會動態生成對手的隨機移動。因此,LSV 必須戰略性地避開這些對手,通過最短路徑到達 UUV。我們展示了模擬結果,以證明我們工具的功能,并通過分析相關的最優性差距和計算復雜性深入研究其性能。

盡管本文中開發的仿真模型和原型工具還不適合立即應用于軍事作戰規劃,但它們為未來的進步建立了一個基本框架。這項工作為在該領域設計更復雜、更實用的解決方案奠定了基礎。提出了未來研究的幾個方向。其中包括擴展模型,以適應在 UUV 網絡中運行的多個 LSV(可能通過同步協調或分散優化)。還建議通過納入多目標優化來擴大服務優先級和復雜性的范圍,加強在線更新的因素范圍,并改進參數以更準確地反映真實世界的操作條件。此外,探索實施欺騙性路由計劃等策略以增強路由能力是未來另一個值得研究的領域。

付費5元查看完整內容

在未知和不確定的環境中開辟安全路徑是領導者-追隨者編隊控制的一項挑戰。在這種結構中,領導者通過采取最佳行動向目標前進,追隨者也應在保持理想隊形的同時避開障礙物。該領域的大多數研究都將編隊控制和障礙物規避分開考察。本研究提出了一種基于深度強化學習(DRL)的新方法,用于欠驅動自主水下航行器(AUV)的端到端運動規劃和控制。其目的是為 AUV 的編隊運動規劃設計基于行動者批判結構的最優自適應分布式控制器。這是通過控制 AUV 的速度和航向來實現的。在避障方面,采用了兩種方法。第一種方法的目標是為領導者和跟隨者設計控制策略,使每個領導者和跟隨者都能學習自己的無碰撞路徑。此外,跟隨者遵守整體編隊維護策略。在第二種方法中,領跑者只學習控制策略,并安全地帶領整個團隊向目標前進。在這里,跟隨者的控制策略是保持預定的距離和角度。在存在洋流、通信延遲和傳感誤差的情況下,展示了所提出方法在現實擾動環境下的魯棒性。通過大量基于計算機的模擬,對算法的效率進行了評估和認可。

付費5元查看完整內容

本論文論證了將小巧、輕便、低成本的商用現貨(COTS)多光譜傳感器集成到小型戰術無人機系統(UAS)中的可行性,以增強對偽裝目標和戰場異常的探測能力。與目前設計中使用的普通電子光學和紅外傳感器(EO/IR)相比,這種能力增強了對此類目標的探測能力。

無人系統在現代軍事行動中應用廣泛,可為戰場指揮官和軍事規劃人員提供新的或增強的能力和作戰概念。它們的主要優勢在于能夠以更高效、規避風險和低成本的方式執行枯燥、骯臟和危險的任務。由于這些原因,無人系統,特別是無人機系統,如今正在執行大多數監視和偵察行動,在所有作戰層面提供必要的情報。

為了應對在現代戰場上擴大使用戰術和戰區級無人機系統進行偵察和監視的情況,地面兵力正在加大力度隱藏其資產,使用偽裝,或利用地形和植被。此外,正規軍和非正規軍廣泛使用地雷和簡易爆炸裝置,對地面部隊構成重大威脅。這些戰術給情報搜集行動帶來了新的挑戰,需要新一代無人機系統加以解決,特別是在戰術層面。

在過去的十年中,多光譜成像技術不斷發展,提供了結構緊湊、成本低廉的傳感器,可增強戰術無人機系統的能力,使其能夠擊敗偽裝,探測普通傳感器無法看到的戰場異常情況。與普通成像傳感器相比,多光譜設備可在可見光和紅外光譜的特定窄波段內成像。此外,多光譜設備還能利用不同材料在這些波段中的吸收和反射率差異,對這些波段進行算法融合。

這項研究旨在回答兩個研究問題,要求探索 COTS 多光譜傳感器探測偽裝人造目標或戰場異常的能力,并將其性能與 RGB 和全色傳感器進行比較。為了回答這些問題,我們使用集成在小型戰術級無人機系統中的多光譜傳感器對偽裝目標進行了幾次實驗性飛行。從這些飛行中收集的數據被用來評估傳感器的性能,并探索融合多光譜數據和生成成像產品的方法。

利用 MATLAB 編程環境開發了一種算法,以實現多光譜數據的融合。該算法可對各個多光譜波段數據進行對齊,并實施三種融合方法。使用歸一化差異植被指數(NDVI)、彩色紅外(CIR)和歸一化差異紅邊藍邊指數(NDREB)對多光譜數據進行融合。歸一化差異植被指數廣泛用于商業農業應用,以區分植被和環境。CIR 還能在多色成像中突出植被。最后,NDREB 是為本論文開發的,它利用了人造目標與環境在紅邊和藍帶反射率上的差異。

對實驗飛行所收集數據的解讀證明,COTS 多光譜傳感器能夠探測偽裝目標和戰場異常,其性能優于普通的 EO/IR 傳感器。此外,還在多個目標場景中評估了所使用的三種融合方法的性能。最后,確定了當前算法在實時操作方面的局限性。成功評估了低成本、緊湊型多光譜傳感器在探測偽裝目標方面的性能,為其在戰術無人機系統中的應用提供了概念證明,并為該領域的未來研究奠定了基礎。

付費5元查看完整內容

軍事決策過程(MDMP)包括分析地形以確保任務成功的關鍵任務。然而,傳統的地形分析方法,如二維(2D)模擬地圖、PowerPoint 演示文稿和任務式指揮系統,資源密集、耗時長,而且會使決策者無所適從。因此,本研究側重于使用移動頭戴式增強現實(AR)顯示技術進行三維(3D)地形可視化,以應對這些挑戰。AR 技術可讓用戶觀察到疊加在物理環境上的虛擬物體,從而增強身臨其境的體驗。該工具允許用戶查看和操作三維地形,添加軍事資源的表示,檢查由此產生的配置,并參與 MDMP。可用性研究評估了界面的有效性、效率和用戶滿意度,重點是三維可視化任務、衍生地形信息提取以及在有爭議的潮濕空隙穿越場景中的部隊部署。結果表明,AR 地形可視化原型為決策者提供了更全面、更準確的信息,使任務規劃和執行取得了成功。這項研究凸顯了三維地形可視化和 AR 技術在改進 MDMP、讓決策者更好地了解環境并做出更明智決策方面的潛力。

A. 研究領域

本研究側重于利用增強現實(AR)技術來支持軍事決策過程(MDMP),這是任務規劃的一個重要方面。該工具可使用戶與描述地形的本地三維(3D)數據集進行交互,并允許使用一套 3D工具。因此,該工具具有增強決策過程和提高 MDMP 會議效率的潛力。

傳統上,美國陸軍在規劃任務時依賴于二維(2D)圖形信息。然而,獲取更詳細的地形信息需要大量的時間和資源,例如創建額外的二維圖形表示法。相比之下,如果地形已被捕獲并表示為三維數據集,工作人員就能獲得所有必要信息,從而參與 MDMP 并做出更明智的決策。

論文研究包括設計和開發一種增強現實(AR)可視化工具,該工具可與三維虛擬地形一起操作,并支持 MDMP,尤其強調濕間隙穿越(WGC)的任務規劃。本論文旨在通過提供虛擬地形的精確數據、允許使用三維工具和更好地做出決策,改善 MDMP 期間的人員協作。此外,這項研究還有助于理解在 MDMP 中促進小團隊合作所需的技術前提條件。

B. 問題與動機

技術進步往往會超越其采用和融入現有系統和流程的速度,這是一種常見現象。例如,在軍事任務中使用 AR 和虛擬現實(VR)技術進行信息共享,可以顯著改善復雜多變行動的規劃和執行。然而,將這些技術納入現有的任務式指揮系統和程序可能具有挑戰性且耗時較長,這主要是由于軍事行動對安全性和可靠性的要求。此外,用戶可能會抵制引入他們不熟悉的新解決方案和技術。因此,盡管信息共享技術進展迅速,但其融入軍事部門的速度卻慢得多。因此,復雜多變的軍事行動仍在使用過時的協議進行規劃和執行,任務式指揮系統長期以來也只是略有改進。

美國陸軍在 MDMP 期間使用各種方法提取信息和分析地形。主要是陸軍的每個作戰職能部門使用二維地圖提取地形信息;參謀部門通過情報地形科請求獲得更詳細的信息。然后,參謀部門將從二維地圖上收集的信息和情報科提供的信息制作成 PowerPoint 演示文稿。指揮官利用這套演示文稿做出最終決定。然而,由于二維地圖的固有局限性及其表現形式(在 PowerPoint 幻燈片中展示靜態二維地圖),參謀部無法始終從地形中提取衍生信息,從而做出明智的決策。如果能以本地三維數據格式顯示地形,并使用一系列合適的三維工具,工作人員就能從地形中提取衍生信息,加強協作,并更好地理解共同行動圖(COP)。

增強現實技術在軍事領域并不新鮮,但在 MDMP 期間尚未得到廣泛應用。通過在 MDMP 期間使用 AR 可視化工具,工作人員可以獲得以前無法用于工作和協作的系統功能。通過 AR 顯示三維虛擬地形并與之互動,每個 WWF 都可以使用簡單的手勢在地形周圍導航,操作這些數據集,操縱和放大縮小地形,并提取決策所需的衍生信息。因此,WWF 可以通過對地形具體情況的透徹了解來證實他們的決策,并更好地闡明他們向指揮官推薦特定行動方案的原因。此外,因誤解二維數據集而可能產生的錯誤也會減少,甚至消除。

關注 WGC 是部署 AR 技術和使用 3D 數據表示的沃土,這是有充分理由的。對于美國陸軍人員來說,WGC 是最具挑戰性的聯合武器任務之一;由于需要投入大量資源和人力資本,這類任務的規劃非常復雜(美國陸軍聯合武器中心,2019 年)。美國陸軍中的六個 WFF 必須緊密配合,以確保 WGC 的安全進行。在 MDMP 開始時,美國陸軍的每個 WFF 都要聽取情報部門關于地形分析的簡報;這一階段稱為戰場情報準備(IPB)。IPB 代表了對部隊行動區(AO)內地形的高層次審視,并提供了有關地形預期的歷史數據(陸軍部總部,2019 年);他們的大部分決策都是基于二維地圖做出的。進行 IPB 后,WFF 根據情報科提供的信息制定行動方案 (COA)。然而,依賴二維地圖有許多固有的局限性。例如,無法從任何給定點查看地形(數據集沒有三維記錄),因此缺少富有成效的 MDMP 所需的豐富地形信息。因此,使用卓越的數據表示,最大限度地減少出錯的可能性,并投入時間有效地研究替代方案和決策,有可能為此類復雜的軍事行動帶來急需的改進和戰略優勢。

C. 研究問題

本論文探討以下研究問題:

1.有可能為聯合武器 MDMP 提供最有效支持的技術框架是什么?

2.AR 支持的 MDMP 工具能否通過提供有關地形分析的衍生信息來增強作戰職能部門對地形的理解?

3.AR 支持的 MDMP 工具能否有效協助資源管理?

4.AR 支持的 MDMP 工具能否有效協助軍事參謀人員在聯合作戰場景中開展協作?

D. 研究范圍

本論文僅限于開發一種 AR 可視化工具和虛擬環境,以支持 "濕間隙穿越 "和提取 MDMP 期間每個 WWF 所需的地形衍生信息。此外,同一工具還可實現軍事參謀部門之間的人員協作和信息交流。

E. 研究方法

用于解決所有研究問題的方法包括以下步驟:

1.文獻綜述:進行文獻綜述,提供論文中使用的基本構造的背景信息。

2.任務分析:對當前開展 MDMP 的實踐進行分析,以跨越濕間隙。這包括但不限于詳細分析行動方案制定過程中不同作戰功能之間的報告和互動、當前地形可視化實踐以及團隊協作。

3.設計 AR 可視化工具: 為工具和用戶界面設計支持系統架構。此外,選擇一套支持用戶任務所需的三維對象和地形。

4.可用性研究:開展可用性研究,重點關注支持 AR 的 MDMP 工具的功能和性能。

5.數據分析:分析在可用性研究中收集的綜合數據集。

6.得出結論并提出未來工作建議。

F. 論文結構

第一章:導言。本章介紹研究空間的最關鍵要素:領域、問題、研究問題、范圍以及用于解決所有研究問題的方法。

第二章:背景和文獻綜述。本章討論美國陸軍如何開展 ADM 和 MDMP 以規劃軍事行動。本章還討論了 VR 和 AR 過去和當前的使用情況,以及在 MDMP 過程中軍事人員合作時 AR 的潛在用途。

第三章:任務分析: 當前 MDMP 實踐。本章分析了當前陸軍參謀人員在 MDMP 期間分析地形時使用的方法和工具,以及如何向指揮官推薦 COA。此外,本章還討論了向指揮官提供 2D 信息時存在的知識差距。

第四章:原型系統設計與實施。本章討論了 AR 可視化工具、系統架構、用戶界面和模擬環境的設計與開發。文中還描述了 WGC 場景和為可用性研究所需的虛擬環境而構建的 3D 模型。

第五章: 可用性研究。本章討論了使用 AR 可視化工具進行可用性研究的方法,包括制定完整的機構審查委員會文件。此外,文中還討論了虛擬環境、技術要求以及在可用性研究中收集的客觀和主觀數據集。最后,本章分析了可用性研究的結果。

第六章:結論和未來工作。本章概述了研究的要點,并對今后的工作提出了建議。

付費5元查看完整內容

作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。

在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。

圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電

結論及后續工作

本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。

付費5元查看完整內容

由于固有的設計復雜性、無限的測試空間和缺乏自主性的具體措施,自主和協作無人系統的實施和測試具有挑戰性。這些挑戰限制了美國空軍部署和利用這些系統所提供的戰術和戰略優勢能力。這項研究在廣域搜索(WAS)場景中實例化了一個自主系統參考架構(ASRA),作為自主和協作系統的快速原型設計和評估的測試平臺。該研究旨在提供一個框架,以評估系統實現任務和自主目標的能力,開發可重復使用的自主行為,并開發可重復使用的協作決策算法。對于這項研究和對WAS任務的應用,自主性的衡量標準來自于自主系統的要求:響應性、穩健性和感知的準確性。自主行為,包括結合簡單(原子)行為的更復雜行為被開發出來,各種協作決策規則被定義。隨后的評估在四個場景中實施了立體實驗設計。按照嚴格的測試計劃,測試是在仿真中進行的,實現了自動測試和快速分析。測試結果被用來創建一個響應模型來描述系統,并進行多重響應優化,以確定一個最佳配置,在給定的目標密度下,使搜索面積、檢測百分比和感知精度最大化。

付費5元查看完整內容
北京阿比特科技有限公司