亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

【導讀】國際人工智能會議AAAI 2022論文將在全程線上舉辦,時間在 2 月 22 日-3 月 1 日,本屆大會也將是第 36 屆 AAAI 大會。大會涵蓋了眾多最近研究Tutorial報告,來自Huan Zhang等學者共同做了關于神經網絡驗證研究進展報告,非常值得關注!

神經網絡已經成為現代人工智能的重要組成部分。然而,它們通常是黑盒,可能會出乎意料地行為,并產生令人驚訝的錯誤結果,例如對抗的例子。在本教程中,我們將介紹神經網絡驗證問題,其目的是保證神經網絡的特性,如魯棒性、安全性和正確性。我們的教程涵蓋了驗證問題的理論基礎和最先進算法的介紹。此外,我們還將為用戶友好的神經網絡驗證工具箱提供實踐編碼教程,允許從業者輕松地將正式的驗證技術應用到他們的定制應用中。我們的教程包括在谷歌Colab中編碼演示。我們將演示通用的auto_LiRPA庫和獲獎的α,β-CROWN驗證器的使用。

目錄內容: Part I: Introduction to Neural Network Verifier Part II: Neural Network Verification Algorithms Part III: Hands-on Tutorial on Using State-of-the-art Verification Tools

地址:

//neural-network-verification.com/

付費5元查看完整內容

相關內容

【導讀】國際人工智能會議AAAI 2022論文將在全程線上舉辦,時間在 2 月 22 日-3 月 1 日,本屆大會也將是第 36 屆 AAAI 大會。大會涵蓋了眾多最近研究Tutorial報告,來自Freddy Lecue, Pasquale Minervini, Fosca Giannotti and Riccardo Guidotti博士共同做了關于可解釋人工智能的進展報告,非常值得關注!

人工智能的未來在于使人類能夠與機器合作解決復雜的問題。就像任何有效的合作一樣,這需要良好的溝通、信任、清晰和理解。可解釋人工智能(XAI)旨在通過結合符號人工智能和傳統機器學習的優點來應對此類挑戰。多年來,各種不同的AI社區都在研究這一主題,他們有著不同的定義、評估指標、動機和結果。

本教程是XAI迄今為止工作的一個概述,并綜述了AI社區所完成的工作,重點是機器學習和符號AI相關方法。我們將闡述XAI在現實世界和大規模應用中的需求,同時提供最先進的技術和最佳的XAI編碼實踐。在教程的第一部分,我們將介紹AI的不同方面的解釋。然后,我們將本教程重點介紹兩種具體方法:(i) XAI使用機器學習,(ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們都進入了具體的方法,目前的技術水平和下一步的研究挑戰。本教程的最后一部分概述了XAI的實際應用以及最佳XAI編碼實踐。

目錄內容:

第一部分: 介紹,動機和評估- 20分鐘 人工智能解釋的廣泛介紹。這將包括從理論和應用的角度描述和激發對可解釋人工智能技術的需求。在本部分中,我們還將總結前提條件,并介紹本教程其余部分所采用的不同角度。

第二部分: 人工智能解釋(不只是機器學習!)- 40分鐘 概述AI各個領域的解釋(優化、知識表示與推理、機器學習、搜索與約束優化、規劃、自然語言處理、機器人技術和視覺),使大家對解釋的各種定義保持一致。對可解釋性的評估也將包括在內。本教程將涵蓋大多數定義,但只會深入以下領域: (i) 可解釋的機器學習,(ii) 可解釋的AI與知識圖譜和機器學習。

第三部分: 知識圖譜在可解釋機器學習中的作用- 40分鐘 在本教程的這一節中,我們將介紹將基于圖的知識庫與機器學習方法相結合的解釋力。

第四部分: XAI工具,編碼和工程實踐- 40分鐘 通過演示如何集成XAI,以及如何根據技術和業務挑戰實例化、調整和定制XAI,我們將了解XAI的編碼和工程實踐。本節將介紹開發代碼,這些代碼將與谷歌Colab共享,便于與AAAI用戶進行互動。本節需要使用谷歌帳號(用于訪問谷歌Colab)。

第五部分:應用、經驗教訓和研究挑戰- 40分鐘 我們將回顧一些在實際示例中應用的XAI開源和商業工具。我們將描述如何基于技術和業務挑戰實例化XAI。我們特別關注一些用例: (1) 解釋目標檢測,(2) 解釋自動駕駛列車的障礙檢測,(3)解釋飛行性能,(4) 解釋具有內置解釋功能的航班延誤預測系統,(5) 一個大規模的合同管理系統,通過知識圖譜上的語義推理預測和解釋企業項目的風險等級; (6) 一個費用系統,識別、解釋和預測500多個城市的大型組織員工的異常費用索賠; (7) 一個信貸決策解釋系統,(8) 醫療條件解釋系統,以及其他8個行業用例。

付費5元查看完整內容

神經網絡已經成為現代人工智能的重要組成部分。盡管如此,它們通常都是黑盒,它們的行為可能出人意料,并產生出人意料的錯誤結果,比如對抗性的例子。在本教程中,我們將介紹神經網絡驗證問題,其目的是正式保證神經網絡的特性,如魯棒性、安全性和正確性。我們的教程涵蓋了驗證問題的理論基礎和最先進算法的介紹。此外,我們還將為用戶友好的神經網絡驗證工具箱提供實踐編碼教程,允許從業者輕松地將正式的驗證技術應用到他們的定制應用中。

我們的教程包括在谷歌Colab中編碼演示。我們將演示通用的auto_LiRPA庫和獲獎的α,β-CROWN驗證器的使用。

付費5元查看完整內容

【導讀】國際人工智能會議AAAI 2021論文將在全程線上舉辦,時間在 2 月 2 日-2 月 9 日,本屆大會也將是第 35 屆 AAAI 大會。大會涵蓋了眾多最近研究Tutorial報告,來自Freddy Lecue, Pasquale Minervini, Fosca Giannotti and Riccardo Guidotti博士共同做了關于可解釋人工智能的進展報告,非常值得關注!

人工智能的未來在于使人類能夠與機器合作解決復雜的問題。就像任何有效的合作一樣,這需要良好的溝通、信任、清晰和理解。可解釋人工智能(XAI)旨在通過結合符號人工智能和傳統機器學習的優點來應對此類挑戰。多年來,各種不同的AI社區都在研究這一主題,他們有著不同的定義、評估指標、動機和結果。

本教程是XAI迄今為止工作的一個概述,并綜述了AI社區所完成的工作,重點是機器學習和符號AI相關方法。我們將闡述XAI在現實世界和大規模應用中的需求,同時提供最先進的技術和最佳的XAI編碼實踐。在教程的第一部分,我們將介紹AI的不同方面的解釋。然后,我們將本教程重點介紹兩種具體方法:(i) XAI使用機器學習,(ii) XAI使用基于圖的知識表示和機器學習的組合。對于這兩種方法,我們都進入了具體的方法,目前的技術水平和下一步的研究挑戰。本教程的最后一部分概述了XAI的實際應用以及最佳XAI編碼實踐。

地址: //aaai.org/Conferences/AAAI-21/aaai21tutorials/#AH7

付費5元查看完整內容

深度神經網絡(DNN)在各個領域的大量機器學習任務中取得了前所未有的成功。然而,在將DNN模型應用于諸如自動駕駛汽車和惡意軟件檢測等安全關鍵任務時,存在的一些反面例子給我們帶來了很大的猶豫。這些對抗例子都是故意制作的實例,無論是出現在火車上還是測試階段,都可以欺騙DNN模型,使其犯下嚴重錯誤。因此,人們致力于設計更健壯的模型來抵御對抗的例子,但它們通常會被新的更強大的攻擊擊垮。這種對抗性的攻擊和防御之間的軍備競賽近年來受到越來越多的關注。**在本教程中,我們將全面概述對抗性攻擊的前沿和進展,以及它們的對策。特別地,我們詳細介紹了不同場景下的不同類型的攻擊,包括閃避和中毒攻擊,白盒和黑盒攻擊。**我們還將討論防御策略如何發展以對抗這些攻擊,以及新的攻擊如何出現以打破這些防御。此外,我們將討論在其他數據域中的敵對攻擊和防御,特別是在圖結構數據中。然后介紹了Pytorch對抗式學習圖書館DeepRobust,旨在為該研究領域的發展搭建一個全面、易用的平臺。最后,我們通過討論對抗性攻擊和防御的開放問題和挑戰來總結本教程。通過我們的教程,我們的觀眾可以掌握對抗性攻擊和防御之間的主要思想和關鍵方法。

目錄內容: Part 1. Introduction about adversarial examples and robustness. Part 2. Algorithms for generating adversarial examples. Part 3. Defending algorithms and adaptive attacks. Part 4. Adversarial learning in Graph domain. Part 5. DeepRobust-- A Pytorch Repository for Adversarial learning.

付費5元查看完整內容
北京阿比特科技有限公司