亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

認知型雷達,根據IEEE標準雷達定義686[1],是 "在某種意義上顯示智能的雷達系統,根據不斷變化的環境和目標場景調整其操作和處理"。特別是,嵌入認知型雷達的主動和被動傳感器使其能夠感知/學習動態變化的環境,如目標、雜波、射頻干擾和地形圖。為了達到探測、跟蹤和分類等任務的優化性能,認知雷達中的控制器實時適應雷達結構并調整資源分配策略[2, 3, 4]。對于廣泛的應用,已經提出了不同的適應技術和方法,例如,自適應重訪時間調度、波形選擇、天線波束模式和頻譜共享,以推進認知雷達背景下的數學基礎、評估和評價[5, 6, 7, 8, 9, 10]。

雖然認知方法和技術在提高雷達性能方面取得了很大進展,但認知雷達設計和實施的一個關鍵挑戰是它與最終用戶的互動,即如何將人納入決策和控制的圈子。在國家安全和自然災害預報等關鍵情況下,為了提高決策質量和增強態勢感知(SA),將人類的認知優勢和專業知識納入其中是必不可少的。例如,在電子戰(EW)系統中,在設計適當的反措施之前,需要探測到對手的雷達。在這種情況下,戰役的進程和成功取決于對一個小細節的觀察或遺漏,僅靠傳感器的自動決策可能是不夠的,有必要將人納入決策、指揮和控制的循環中。

在許多應用中,人類也充當了傳感器的角色,例如,偵察員監測一個感興趣的現象(PoI)以收集情報。在下一代認知雷達系統中,最好能建立一個框架來捕捉基于人類的信息來源所建議的屬性,這樣,來自物理傳感器和人類的信息都可以被用于推理。然而,與傳統的物理傳感器/機器4的客觀測量不同,人類在表達他們的意見或決定時是主觀的。人類決策的建模和分析需要考慮幾個因素,包括人類的認知偏差、處理不確定性和噪音的機制以及人類的不可預測性,這與僅由機器代理組成的決策過程不同。

已經有研究工作利用信號處理和信息融合的理論來分析和納入決策中的人類特定因素。在[11]中,作者采用了先驗概率的量化來模擬人類在貝葉斯框架下進行分類感知而不是連續觀察的事實,以進行協作決策。在[12,13]中,作者研究了當人類代理人被假定使用隨機閾值進行基于閾值的二元決策時的群體決策性能。考慮到人類受到起點信念的影響,[14]中研究了數據的選擇、排序和呈現對人類決策性能的影響。在人類協作決策范式中,已經開發了不同的方案和融合規則來改善人類人群工作者的不可靠和不確定性[15, 16]。此外,在[17,18]中,作者將前景理論(PT)用于描述人類的認知偏見,如風險規避,并研究了現實環境中的人類決策行為。在[19, 20]中也探討了基于人類和機器的信息源在不同場景下的信息融合。在[19]中,作者表明,人類的認知力量可以利用多媒體數據來更好地解釋數據。一個用戶細化階段與聯合實驗室主任(JDL)融合模型一起被利用,以在決策中納入人類的行為因素和判斷[20]。

未來的戰場將需要人類和機器專業知識的無縫整合,他們同時在同一個環境模型中工作,以理解和解決問題。根據[21],人類在隨機應變和使用靈活程序、行使判斷和歸納推理的能力方面超過了機器。另一方面,機器在快速反應、存儲大量信息、執行常規任務和演繹推理(包括計算能力)方面勝過人類。未來雷達系統中的高級認知尋求建立一種增強的人機共生關系,并將人類的優點與機器的優點融合在一起[22]。在本章中,我們概述了這些挑戰,并重點討論了三個具體問題:i)人類決策與來自物理傳感器的決策的整合,ii)使用行為經濟學概念PT來模擬人類在二元決策中的認知偏差,以及iii)在相關觀測下半自主的二元決策的人機協作。

本章的其余部分組織如下。在第11.1節中,我們介紹了一項工作,說明如何將人類傳感器的存在納入統計信號處理框架中。我們還推導出當人類擁有機器無法獲得的輔助/側面信息時,這種人機一體化系統的漸進性能。我們采用行為經濟學的概念前景理論來模擬人類的認知偏差,并在第11.2節中研究人類在二元假設檢驗框架下的決策行為。第11.3節討論了一種新的人機協作范式來解決二元假設檢驗問題,其中人的知識和機器的觀察的依賴性是用Copula理論來描述的。最后,我們在第11.4節中總結了與這個問題領域相關的當前挑戰和一些研究方向,然后在第11.5節中總結。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

認知方法在幾乎所有方面可提高現有雷達的性能,這導致了近年來研究的激增,空軍雷達建模和仿真(M&S)工具的一個關鍵差距是缺乏針對分布式全適應雷達(FAR)系統的全面、動態分布式雷達情景生成能力。截至2015年初,所有的研究都是在理論上推進概念,并通過模擬檢驗其性能,或者最多使用預先錄制的數據。沒有關于實驗驗證概念的報告,主要是因為還沒有開發出測試它們的必要硬件。然而,為了確定應用認知處理方法的真正性能潛力,這一步驟是至關重要的。為了解決這個問題,俄亥俄州立大學(OSU)電子科學實驗室(ESL)的認知傳感實驗室(CSL)與Metron公司、空軍研究實驗室(AFRL)和空軍科學研究辦公室(AFOSR)一起,已經開始了一項研究計劃,從分析和實驗上開發和檢驗認知雷達處理概念。

CSL設計并建造了認知雷達工程工作區(CREW),這是世界上第一個專門用來測試完全自適應和認知算法的雷達測試平臺,Metron和OSU開發了一個認知FAR系統的理論框架,在單一傳感器和目標的目標探測和跟蹤范圍內確定了關鍵的系統組件并進行了數學建模。我們一直在開發建模、模擬、分析和實驗能力,以證明FAR系統比傳統的前饋雷達(FFR)系統取得的性能改進。我們從OSU的軟件定義雷達(SDR)系統的模擬場景和預先記錄的數據開始。我們現在有能力利用CREW演示認知雷達跟蹤系統的實時操作。

這個項目的目標是為分布式FAR雷達開發一個基于MATLAB的M&S架構,從而能夠在模擬的、以前收集的和實時的流式數據上進行算法開發和測試。在第一階段,我們開發了一個基線FAR M&S架構,該架構采用面向對象編程(OOP)方法在MATLAB中編碼。它包括一個控制感知-行動(PA)周期運行的FAR引擎和確定下一組傳感參數的軟件對象;從傳感器獲取數據;處理數據以跟蹤目標;存儲和顯示傳感和跟蹤過程的結果。我們開發的模塊實現了模擬和預先錄制的SDR數據實例,以及實時和模擬的CREW數據實例。

第一階段開發的FAR M&S架構允許在模擬和實驗CREW數據源之間,以及在驅動傳感的FAR算法之間進行透明切換。輕松交換傳感和處理對象的能力將允許快速開發和測試認知雷達算法,通過構建M&S功能來避免重復工作和 "單點 "解決方案。它將使工業界、學術界和空軍的研究人員之間的合作成為可能,因為不同研究人員開發的算法可以使用一致的模擬、收集的數據和實驗室條件進行測試和比較。

付費5元查看完整內容

本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。

1.1 背景與動機

這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。

Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。

最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:

  • 各種任務,如導航到一個目的地或描述一個物體的位置,涉及處理物體的空間屬性和關系。......或某些應用(如探索未知環境),由于對環境的不完全了解,可能并不總是有定量的數據。......可理解的相互作用和可接受的解釋往往比高精確度更可取(Kuipers 1983)。對于這些應用,定性的空間關系似乎更適合。

對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。

一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?

本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。

1.2 路線偵察

以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。

  • 路線偵察的重點是獲得關于一條指定路線和敵人可能影響沿該路線移動的所有地形的信息。路線偵察的方向可以是一條道路、一條狹窄的軸線(如滲透通道),或一個總的攻擊方向......防御陣地。......部隊可以機動的可用空間......所有障礙物的位置和類型以及任何可用的繞道位置。障礙物可包括雷區、障礙物、陡峭的峽谷、沼澤地或核生化污染 ......沿途和鄰近地形的觀察和火力范圍 ......沿途提供良好掩護和隱蔽的地點 ......。橋梁的結構類型、尺寸和分類。著陸區和接駁區。與路線相交或穿越的道路和小徑。. . 如果建議路線的全部或部分是道路,則該排認為該道路是一個危險區域。它使用有掩護和隱蔽的路線與道路平行移動。當需要時,偵察和安全小組靠近道路,以偵察關鍵區域。

路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:

  • 網格參考。磁性北方箭頭..道路彎道..陡峭的坡度..道路寬度的限制(橋梁,隧道等)..岔道的位置..隧道..

讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:

1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。

2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。

a. 物體(例如,障礙物)在位置或區域。

b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。

c. 地點可能代表更大的區域(例如,雷區的位置)。

d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。

  1. 一些實體對路線具有戰術價值,無論是進攻還是防御(例如,雷區)。

a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。

b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。

4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。

  1. 路線和地形的三維幾何特性是相關的:道路上的急轉彎,陡峭的坡度,等等。

6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。

1.3 路線偵察抽象

路線偵查收集和解釋不同種類和不同來源的信息:

  • 背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。

  • 任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。

  • 環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。

  • 任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。

  • 如前所述,一份報告。

原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。

不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。

用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。

代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。

新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。

背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。

付費5元查看完整內容

在學習型網絡物理系統(LE-CPS)中使用的機器學習模型,如自動駕駛汽車,需要能夠在可能的新環境中獨立決策,這可能與他們的訓練環境不同。衡量這種泛化能力和預測機器學習模型在新場景中的行為是非常困難的。在許多領域,如計算機視覺[1]、語音識別[2]和文本分析[3]的標準數據集上,學習型組件(LEC),特別是深度神經網絡(DNN)的成功并不代表它們在開放世界中的表現,在那里輸入可能不屬于DNN被訓練的訓練分布。因此,這抑制了它們在安全關鍵系統中的部署,如自動駕駛汽車[4]、飛機防撞[5]、戰場上的自主網絡物理系統(CPS)網絡系統[6]和醫療診斷[7]。這種脆性和由此產生的對基于DNN的人工智能(AI)系統的不信任,由于對DNN預測的高度信任而變得更加嚴重,甚至在預測通常不正確的情況下,對超出分布范圍(OOD)的輸入也是如此。文獻[8, 9]中廣泛報道了這種對分布外(OOD)輸入的不正確預測的高信心,并歸因于模型在負對數似然空間中的過度擬合。要在高安全性的應用中負責任地部署 DNN 模型,就必須檢測那些 DNN 不能被信任的輸入和場景,因此,必須放棄做出決定。那么問題來了:我們能不能把這些機器學習模型放在一個監測架構中,在那里它們的故障可以被檢測出來,并被掩蓋或容忍?

我們認為,我們已經確定了這樣一個用于高安全性學習的CPS的候選架構:在這個架構中,我們建立一個預測性的上下文模型,而不是直接使用深度學習模型的輸出,我們首先驗證并將其與上下文模型融合,以檢測輸入是否會給模型帶來驚喜。這似乎是一個語義學的練習--即使是通常的機器學習模型通常也會 "融合 "來自不同傳感器的解釋,這些解釋構成了模型的輸入,并隨著時間的推移進行整理--但我們認為,我們提出的監測架構相當于重點的轉移,并帶來了新的技術,正如我們將在本報告中說明的。我們建議,一個更好的方法是根據背景模型來評估輸入:模型是我們所學到的和所信任的一切的積累,根據它來評估新的輸入比只預測孤立的輸入更有意義。這是我們推薦的方法的基礎,但我們把它定位在一個被稱為預測處理(PP)的感知模型中[10],并輔以推理的雙重過程理論[11]。在這份報告中,我們還提供了這個運行時監控架構的候選實現,使用基于歸一化流的特征密度建模來實現第一層監控,以及基于圖馬爾科夫神經網絡的神經符號上下文建模來實現第二層。

我們用一個自主汽車的簡單例子來解釋我們方法背后的基本原理,并展示了上下文模型如何在監測LEC中發揮作用。考慮一下汽車視覺系統中有關檢測交通線的部分。一個基本的方法是尋找道路上畫的或多或少的直線,自下而上的方法是在處理每一幀圖像時執行這一過程。但這是低效的--當前圖像幀中的車道很可能與前幾幀中的車道相似,我們肯定應該利用這一點作為搜索的種子,而且它是脆弱的--車道標記的缺失或擦傷可能導致車道未被檢測到,而它們本來可以從以前的圖像中推斷出來。一個更好的方法是建立一個道路及其車道的模型,通過預測車道的位置,用它來作為搜索當前圖像中車道的種子。該模型及其對車道的預測將存在一些不確定性,因此發送給視覺系統的將是最好的猜測,或者可能是幾個此類估計的概率分布。視覺系統將使用它作為搜索當前圖像中車道的種子,并將預測和當前觀察之間的差異或 "誤差 "發送回來。誤差信號被用來完善模型,旨在最小化未來的預測誤差,從而使其更接近現實。

這是一個 "綜合分析 "的例子,意味著我們提出假設(即候選世界模型),并偏向于那些預測與輸入數據相匹配的模型。在實際應用中,我們需要考慮有關 "預測 "的層次:我們是用世界模型來合成我們預測傳感器將檢測到的原始數據(如像素),還是針對其局部處理的某個更高層次(如物體)?

這種自上而下的方法的重要屬性是,它專注于世界模型(或模型:一個常見的安排有一個模型的層次)的構建和前利用,與更常見的自下而上的機器學習模型形成對比。我們將展開論證,自上而下的方法對于自主系統中感知的解釋和保證是有效的,但有趣的是,也許可以放心的是,人們普遍認為這是人類(和其他)大腦中感知的工作方式,這是由Helmholtz在19世紀60年代首次提出的[12]。PP[13],也被稱為預測編碼[14]和預測誤差最小化[15],認為大腦建立了其環境的模型,并使用這些模型來預測其感覺輸入,因此,它的大部分活動可以被視為(近似于)迭代貝葉斯更新以最小化預測誤差。PP有先驗的 "預測 "從模型流向感覺器官,貝葉斯的 "修正 "又流回來,使后驗模型跟蹤現實。("自由能量"[16]是一個更全面的理論,包括行動:大腦 "預測 "手,比如說,在某個地方,為了盡量減少預測誤差,手實際上移動到那里。) 這與大腦從上層到下層的神經通路多于反之的事實是一致的:模型和預測是向下流動的,只有修正是向上流動的。

有趣的是,大腦似乎以這種方式工作,但有獨立的理由認為,PP是組織自主系統感知系統的好方法,而不是一個主要是自下而上的系統,其中傳感器的測量和輸入被解釋和融合以產生一個世界模型,很少有從模型反饋到傳感器和正在收集的輸入。2018年3月18日在亞利桑那州發生的Uber自動駕駛汽車與行人之間的致命事故說明了這種自下而上的方法的一些不足之處[17]。

純粹的自下而上的系統甚至不能回憶起之前的傳感器讀數,這就排除了從位置計算速度的可能性。因此,感知系統通常保持一個簡單的模型,允許這樣做:林的視覺處理管道的物體跟蹤器[18]就是一個例子,Uber汽車也采用了這樣的系統。Uber汽車使用了三個傳感器系統來建立其物體追蹤器模型:攝像頭、雷達和激光雷達。對于這些傳感器系統中的每一個,其自身的物體檢測器都會指出每個檢測到的物體的位置,并試圖將其分類為,例如,車輛、行人、自行車或其他。物體追蹤器使用一個 "優先級方案來融合這些輸入,該方案促進某些追蹤方法而不是其他方法,并且還取決于觀察的最近時間"[17,第8頁]。在亞利桑那車禍的案例中,這導致了對受害者的識別 "閃爍不定",因為傳感器系統自己的分類器改變了它們的識別,而且物體追蹤器先是喜歡一個傳感器系統,然后是另一個,如下所示[17,表1]。

  • 撞擊前5.6秒,受害者被列為車輛,由雷達識別
  • 撞擊前5.2秒,受害者被歸類為其他,通過激光雷達
  • 撞擊前4.2秒,根據激光雷達,受害者被歸類為車輛
  • 在撞擊前3.8秒和2.7秒之間,通過激光雷達,在車輛和其他之間交替進行分類
  • 撞擊前2.6秒,根據激光雷達,受害者被歸類為自行車
  • 撞擊前1.5秒,根據激光雷達,受害者被歸類為不知名。
  • 撞擊前1.2秒,根據激光雷達,受害者被歸類為自行車。

這種 "閃爍 "識別的深層危害是:"如果感知模型改變了檢測到的物體的分類,在生成新的軌跡時就不再考慮該物體的跟蹤歷史"[17,第8頁]。因此,物體追蹤器從未為受害者建立軌跡,車輛與她相撞,盡管她已經以某種形式被探測了幾秒鐘。

這里有兩個相關的問題:一個是物體追蹤器保持著一個相當不完善的世界和決策背景的模型,另一個是它對輸入的決策方法沒有注意到背景。預測性處理中的感知所依據的目標是建立一個準確反映世界的背景模型;因此,它所編碼的信息要比單個輸入多得多。我們想要的是一種測量情境模型和新輸入之間的分歧的方法;小的分歧應該表明世界的常規演變,并可以作為模型的更新納入;大的分歧需要更多的關注:它是否表明一個新的發展,或者它可能是對原始傳感器數據解釋的缺陷?在后面兩種情況中的任何一種,我們都不能相信機器學習模型的預測結果。

預測處理方法的實施可以采用貝葉斯方法[19]。場景模型表示環境中的各種物體,以及它們的屬性,如類型、軌跡、推斷的意圖等,并對其中的一些或全部進行概率分布函數(pdf s)。觀察更新這些先驗,以提供精確的后驗估計。這種貝葉斯推理通常會產生難以處理的積分,因此預測處理采用了被稱為變異貝葉斯的方法,將問題轉化為后驗模型的迭代優化,以最小化預測誤差。卡爾曼濾波器也可以被看作是執行遞歸貝葉斯估計的一種方式。因此,像神經科學、控制理論、信號處理和傳感器融合這樣不同的領域都可能采用類似的方法,但名稱不同,由不同的歷史派生。思考PP的一種方式是,它將卡爾曼濾波的思想從經典的狀態表征(即一組連續變量,如控制理論)擴展到更復雜的世界模型,其中我們也有物體 "類型 "和 "意圖 "等表征。預測處理的一個有吸引力的屬性是,它為我們提供了一種系統的方法來利用多個輸入和傳感器,并融合和交叉檢查它們的信息。假設我們有一個由相機數據建立的情境模型,并且我們增加了一個接近傳感器。預測處理可以使用從相機中獲得的模型來計算接近傳感器預計會 "看到 "什么,這可以被看作是對模型準確性的可驗證的測試。如果預測被驗證了,那么我們就有了對我們上下文模型某些方面的獨立確認。我們說 "獨立 "是因為基于不同現象的傳感器(如照相機、雷達、超聲波)具有完全不同的解釋功能,并在不同的數據集上進行訓練,這似乎是可信的,它們會有獨立的故障。在一個完全集成的預測處理監視器中,情境模型將結合來自所有來源的信息。情境模型將保守地更新以反映這種不確定性,監測器將因此降低其對機器學習模型的信心,直到差異得到解決。

請注意,上下文模型可以是相當簡單粗暴的:我們不需要場景的照片,只需要知道我們附近的重要物體的足夠細節,以指導安全行動,所以相機和接近傳感器 "看到 "的相鄰車輛的輪廓之間的差異,例如,可能沒有什么意義,因為我們需要知道的是他們的存在,位置,類型和推斷的意圖。事實上,正如我們將在后面討論的那樣,我們可以在不同的細節層次上對上下文進行建模,自上而下的生成模型的目標是生成不同層次的感知輸入的抽象,而不是準確的傳感器值。在報告中討論的我們的實現中,我們在兩個層次上對上下文進行建模--第一個層次使用深度神經網絡的特征,第二個層次對場景中物體之間更高層次的空間和時間關系進行建模。除了傳感器,感知的上層也將獲得關于世界的知識,可能還有人工智能對世界及其模型的推理能力。例如,它可能知道視線和被遮擋的視野,從而確定在我們附近的車輛可能無法看到我們,因為一輛卡車擋住了它的去路,這可以作為有關車輛的可能運動("意圖")的增加的不確定性納入世界模型中。同樣,推理系統可能能夠推斷出反事實,比如 "我們將無法看到可能在那輛卡車后面的任何車輛",這些可以作為 "幽靈 "車輛納入世界模型,直到它們的真實性被證實或被否定。我們對監控架構第2層的神經符號建模的選擇對于整合這種背景和學習的知識以及對這些知識進行推理至關重要。

在這方面,另一個關于人腦組織的理論很有意思;這就是 "雙過程 "模型[20, 21],由卡尼曼推廣的獨立 "快慢 "思維系統[22]。它的效用最近已經通過一個非常有限的實現被證明用于計算機器學習模型的信心[23, 24]。系統1是無意識的、快速的、專門用于常規任務的;系統2是有意識的、緩慢的、容易疲勞的、能夠斟酌和推理的,這就是我們所說的 "思考"。就像預測處理一樣,我們提倡雙過程模型并不僅僅是因為它似乎符合大腦的工作方式,而是因為它似乎是獨立的,是一個好架構。在這里,我們可以想象一個特征密度正常化的流生成模型形成一個高度自動化的 "系統1",而更多的深思熟慮的神經符號模型構成一個 "系統2",當系統1遇到大的預測錯誤時,該系統會主動參與。系統1維持一個單一的生成性世界模型,而系統2或者對其進行潤色,或者維持自己的更豐富的世界模型,具有對符號概念進行反事實的 "what-if "推理能力。人們認為,人類保持著一個模型的層次結構[20, 21, 22],這似乎也是自主系統的一個好方法。我們的想法是,在每一對相鄰的模型(在層次結構中)之間都有一個預測處理的循環,因此,較低的層次就像上層的傳感器,其優先級和更新頻率由預測誤差的大小決定。

人類的預測處理通常被認為是將 "驚訝 "降到最低的一種方式,或者說是保持 "情況意識"。加強這一點的一個方法是在構建世界模型時增加系統2對假設推理的使用,以便將沒有看到但 "可能存在 "的東西明確地表示為 "幽靈 "或表示為檢測到的物體屬性的不確定性增加。一個相關的想法是利用人工智能進行推斷,例如,檢測到前面有許多剎車燈,就可以推斷出某種問題,這將被表示為世界模型中增加的不確定性。這樣一來,本來可能是意外情況的驚奇出現,反而會發展為不確定性的逐漸變化,或將幽靈解決為真實的物體。圖馬爾科夫神經網絡提供了一個有效的機制,既可以對這些關系和更豐富的背景進行建模,又可以通過反事實查詢和背景知情的預測進行審議。因此,雙重過程理論激發了我們的運行時監控器的兩層預測編碼結構。雖然這些理論旨在解釋人類的認知,但我們將這些作為運行時監控器來計算底層模型的驚喜,因此,當模型由于新奇的或超出分布的或脫離上下文的輸入而不能被信任時,就會被發現。

圖 1:基于預測處理和雙過程理論的自主量化保障架構

圖1展示了所提出的深度學習模型運行時監控的整體架構。如圖所示,該架構有兩個層次(由雙重過程理論激發)。在第一層,我們使用生成模型,學習輸入的聯合分布、預測的類輸出和模型提供的解釋。在第二層,我們使用圖馬爾可夫神經網絡來學習物體檢測任務的物體之間的空間和時間關系(更一般地說,輸入的組成部分)。在這兩層中,我們在本報告中的重點是運行時監測,而不是開發一個認知系統本身(而使用所提出的方法建立一個強大的、有彈性的、可解釋的系統將是自然的下一步)。因此,由這兩層檢測到的驚喜被監控者用來識別底層LEC何時不能被信任。這也可以作為LE-CPS的一個定量保證指標。

提綱

第3節介紹了預測性處理和雙進程架構(低級別的自動化和高級別的審議),并認為這可以支持一種可信的方法來保證自主系統的穩健行為。它也被廣泛認為反映了人類大腦的組織。我們提出了使用不同的神經架構和神經符號模型的組成來可擴展地完成這些的機制。結果在第4節報告。第5節提供了一些與工業建議的比較,并提出了結論和額外研究的建議。

付費5元查看完整內容

美國陸軍未來司令部的士兵致命性(SL)跨職能小組(CFT)正在研究通過頭戴式和武器式能力的組合來增強下馬步兵的新方法。根據SLCFT的指示,美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室的研究人員探索了加強輔助目標識別能力的技術,作為陸軍下一代智能班組武器計劃的一部分。

敵對環境中涉及潛在目標的復雜決策必須由下馬的士兵做出,以保持戰術優勢。這些決定可能是人工智能(AI)技術的強大信息,如AI支持的火力或指揮和控制決策輔助工具。例如,一個士兵發射武器是一個明確的跡象,表明該地區有一個敵對的目標。然而,一個士兵在環境中追蹤一個潛在的目標,然后放下他們的武器,這是一個模糊的、隱含的跡象,表明該目標受到關注,但最終被該士兵認為不是一個直接的威脅。在近距離作戰的環境中,與士兵狀態相關的隱性標記數據(如光電視頻、位置信息或火力行動)可用于輸入決策輔助工具,以得出真實的戰場背景。然而,需要對這些行動進行更徹底的檢查。此外,來自單個士兵的突發非交流行為在整個班級中的匯總可以增強戰術態勢感知。盡管它們有可能產生戰術影響,但這些狀態估計或行為指標往往不能以立即可用的形式獲得。

DEVCOM陸軍研究實驗室(ARL)的研究人員調查了一種通過機會主義感應來進行下馬士兵狀態估計的方法--一種不需要人類明確行動就能收集和推斷關鍵的真實世界數據的方法。在通過正常使用武器追蹤和攻擊移動和靜止目標時,連續獲得數據以解釋士兵的行為。這項工作中使用的士兵-武器行為分類方法主要來自人類活動識別(HAR)研究。然而,在這項工作中,為了提高行為結果的生態有效性,在眼球追蹤文獻中經常使用的實驗范式被反映出來,將眼球運動和認知推理聯系起來。具體來說,眼動跟蹤研究的一個子集的目標是收集和解釋與公開的視覺注意力有關的眼動事件(即固定、囊狀運動和追逐),這可以揭示認知過程和關于環境的客觀內容。在戰斗中,士兵們可能會將他們的目標停留在一個靜態的目標上(固定),當出現新的目標時迅速轉換目標點,有潛在的目標出現(囊狀運動),或者在潛在目標移動時跟蹤他們的目標點(平滑追擊)。

目前,頭戴式眼動跟蹤技術正在開發用于戰斗。然而,與校準誤差有關的凝視數據中的噪聲使其難以有效地使用這些數據。一個更突出的解決方案可能存在于士兵和他們的武器之間的互動中,這項工作使用傳統的HAR技術進行。執行HAR的主要方法是在一個人進行一些身體活動時,使用慣性測量單元收集時間序列數據。然后使用機器學習技術來訓練分類模型,根據數據信號預測行動。這種方法可以擴展到包括在人類與物體互動時對其運動的分類。在這種情況下,當近距離作戰的士兵與潛在的威脅進行互動時,武器的運動特征被伺機獲得,這為這些士兵在這種環境中做出的復雜決定提供了一個窗口。

論文中記錄并發表了對這一評估的全面分析。對來自動態士兵狀態估計的運動數據進行建模和分析以實現對形勢的理解。

付費5元查看完整內容

軍隊正在研究改善其多域作戰(MDO)中的通信和敏捷性的方法。物聯網(IoT)的流行在公共和政府領域獲得了吸引力。它在MDO中的應用可能會徹底改變未來的戰局,并可能帶來戰略優勢。雖然這項技術給軍事能力帶來了好處,但它也帶來了挑戰,其中之一就是不確定性和相關風險。一個關鍵問題是如何解決這些不確定性。最近發表的研究成果提出了信息偽裝,將信息從一個數據域轉化為另一個數據域。由于這是一個相對較新的方法,我們研究了這種轉換的挑戰,以及如何檢測和解決這些相關的不確定性,特別是未知-未知因素,以改善決策。

背景

現代世界受到了技術和全球連接的基礎設施動態的重大影響。隨著這種新環境的出現,許多領域的決策過程面臨更大的挑戰。領導者和決策者必須考慮各種因素的影響,包括那些屬于已知和未知的數據來源[9]。

雖然這不是一個新的概念,但在一些論文中已經提出了對已知和未知因素進行分類的定義。當條件是"已知-已知"(Known-Knowns):那么條件是有我們知道和理解的知識,已知-未知(known-Unknowns):條件是有我們不知道但不理解的知識,未知-已知(Unknown-knowns):條件是有我們理解但不知道的知識,以及"未知-未知"(Unknown-Unknowns):條件是有我們不理解也不知道的知識[6]。在圖1中,對知識的已知和未知分區的討論是圍繞一個問題展開的。圖中所選的是與對風險的認識和理解有關的。

在這四種情況中,"已知-已知"是最明顯的一種,人們可以對一個特定的問題有完整的了解,而 "未知-未知"則完全相反,也是最具挑戰性的一種。因此,重點應該是制定策略,以發現可能的未知數,從而將其轉換為已知數的數據。然而,在許多情況下,這可能不是小事,這可能需要應急計劃和適應性技能來應對不可預見的情況。

已知-未知的任務計劃需要被徹底觀察。然而,由于已知的部分,只要有足夠的時間和資源投入,就可以找到一個合理的方案。最后,為了處理未知數[11,22,23],人類是最著名的直覺模型,具有很強的預知能力[5]。因此,包括來自個人或團體的建議可以幫助對那些被遺漏的數據進行分類,從而被機器學習模型認為是未知的。

我們在圖2中提供了上述與我們的 "已知 "和 "未知"知識相關的不確定性區域的可視化表示。在這項研究中,我們將未知數視為圖像數據中未見或未檢測到的對象類別,通過應用第3.1節所述的圖像-音頻編碼方案,這些對象可以被發現或重新歸類為已知數。

圖2:我們提出的方法的可視化表示,說明了已知和未知對的前提。當我們離開綠色區域外的中心,踏入其他顏色的區域時,人類知識的邊界變得模糊和混亂。"?"代表需要探索的區域。紅色區域的點狀周長表示該區域的無界性,因為對該區域及其存在缺乏任何知識。向內的點狀箭頭表示目標應該是將這個紅色區域匯聚到任何可能的黃色、藍色或綠色區域。按照這個順序,理想情況下,每一個包絡區域都應該被收斂到它所包絡的區域。

動機與挑戰

任何決策都會受到風險存在的嚴重影響,任何能夠幫助識別和了解已知和未知的過程都是理想的。此外,對未知數據的識別和檢測可以使風險最小化。然而,面對先驗知識并不奢侈,只有少數數據樣本可供分析的情況很常見。軍事決策者,如指揮官,在做出關鍵決定時可能沒有什么選擇,最終可能完全依賴于他們的專業知識和新數據的輸入。他們可能會利用以前的經驗來分析傳來的信息,并捕捉可能的未知數據,以盡量減少風險。這種方法可能仍然不能涵蓋所有的未知因素。

本文工作的動機是決策中的主要挑戰,即我們完全依靠有意義的和足夠的數據來支持決策。另外,決策者必須對用于提供數據支持決策的技術的性能和結果有信心。因此,我們研究了當深度學習模型的性能由于缺乏豐富的數據樣本而受到限制時,如何提高決策過程中的信任水平。我們關注一個訓練有素的模型如何能夠高精度地檢測和識別未知(未檢測到的)物體;該模型區分新的觀察是屬于已知還是未知類別的能力。

這項工作背后的動力來自于美國陸軍的IoBT CRA項目中的一個問題,該項目將設備分為:紅色(敵人)、灰色(中立)、藍色(朋友)資產。類的屬性和行為是非常不確定的,與前面提到的第1.1節中的已知或未知的挑戰有關,因為要么來自友好來源的數據可能被破壞,要么敵人有可能被欺騙成友好數據來源[1,2,3,4]。因此,以較高的置信度對這些資產進行分類是一項具有挑戰性的任務。應對這一挑戰的最初步驟是,從這些設備中獲取數據,例如圖像、文本或音頻,并調查未知數據是否可以被分類為已知數據。

提出的方法

我們的方法包括選擇圖像數據和建立一個深度學習框架來解決分類的挑戰。圖像類被特別選擇來代表類似于軍事行動中常用的地形景觀。

因此,我們的框架由兩個獨立的部分組成;對從原始數據集獲得的圖像進行分類,以及對使用圖像-音頻編碼方案從圖像獲得的音頻信號進行分類(第3.1節)。

由于編碼將數據從一個數據域(圖像)轉換到另一個數據域(音頻),預計會有信息損失。為了解決上述轉換后的數據樣本的挑戰,我們提出了以下問題:當數據被編碼方案轉換后,我們能否提高模型的性能,從而將未知數轉換成已知數?我們怎樣才能彌補模型的低性能,從而使以前的未知數據能夠用于提高決策過程中的可信度?在模型的性能和正確分類數據以支持決策之間的權衡是什么?

付費5元查看完整內容

現代數字雷達在其波形、雷達參數設置和傳輸方案方面提供了前所未有的靈活性,以支持多種雷達系統目標,包括目標探測、跟蹤、分類和其他功能。這種靈活性為提高系統性能提供了潛力,但需要一個閉環感知和響應方法來實現這種潛力。完全自適應雷達(FAR),也被稱為認知雷達,是模仿認知的感知-行動周期(PAC),以這種閉環方式適應雷達傳感器。在這項工作中,我們將FAR概念應用于雷達資源分配(RRA)問題,以決定如何將有限的雷達資源如時間、帶寬和天線波束寬度分配給多個相互競爭的雷達系統任務,并決定每個任務的傳輸參數,使雷達資源得到有效利用,系統性能得到優化。

已經提出了一些感知-行動的RRA方法。這一領域的最新工作被稱為認知雷達資源管理,而較早的相關工作則被稱為簡單的傳感器管理或資源分配。這些算法依賴于兩個基本步驟。首先,它們以概率方式捕獲(感知)監視區域的狀態。其次,他們使用這種概率描述,通過確定哪些行動有望實現效用最大化來選擇未來的傳感行動。

任何RRA算法的一個關鍵挑戰是平衡目標探測、跟蹤、分類和其他雷達任務的多個競爭性目標。這一點通過優化步驟中用于選擇下一步雷達行動的目標函數來解決。目標函數也被稱為收益、標準、價值或成本函數。因此,以適合優化的數學形式闡明系統目標,對完全自適應雷達資源分配(FARRA)系統的運行至關重要。隨著可用于適應的參數數量和雷達系統任務數量的增加,這變得越來越困難。這種優化有兩種基本方法:任務驅動和信息驅動。

在任務驅動的方法中,為每個任務指定性能服務質量(QoS)要求,如探測目標的預期時間或跟蹤的均方根誤差(RMSE),并通過加權各種任務的效用來構建一個綜合目標函數。這樣做的好處是能夠分別控制任務性能,并確定任務的相對重要性。然而,它需要用戶有大量的領域知識和判斷力,以指定任務要求和傳感器成本,并構建成本/效用函數和加權,以結合不同的任務性能指標。

在信息驅動的方法中,一個全局信息測量被優化。常見的信息測量包括熵、相互信息(MI)、Kullback-Leibler分歧(KLD)和Renyi(alpha)分歧。信息指標隱含地平衡了一個雷達可能獲得的不同類型的信息。這具有為所有任務提供共同的衡量標準(信息流)的理想特性,但沒有明確優化諸如RMSE等任務標準。因此,信息理論的衡量標準可能很難被終端用戶理解并歸結為具體的操作目標。此外,如果沒有額外的特別加權,它們不允許單獨控制任務,并可能產生以犧牲其他任務為代價而過度強調某些任務的解決方案,或者選擇在用戶偏好判斷下只提供邊際收益的傳感器行動。

在這項工作中,我們考慮一個雷達系統對多個目標進行同步跟蹤和分類。基于隨機優化的FAR框架[28],為我們的PAC提供了結構。我們開發并比較了用于分配系統資源和設置雷達傳輸參數的任務和信息驅動的FARRA算法,并在模擬機載雷達場景和俄亥俄州立大學的認知雷達工程工作區(CREW)實驗室測試平臺上說明其性能。這項工作結合并擴展了我們以前在傳感器管理[8-14]和FAR[18, 21, 27, 29-31]的工作。初步版本發表于[32]。結果表明,任務和信息驅動的算法具有相似的性能,但選擇不同的行動來實現其解決方案。我們表明,任務和信息驅動的算法實際上是基于共同的信息理論量,所以它們之間的區別在于所使用的指標的粒度和指標的加權程度。

本章的組織結構如下。在第10.2節中,我們提供了FAR框架的概述,在第10.3節中,我們通過為這個問題指定FAR框架的組成部分來開發多目標多任務FARRA系統模型。在第10.4節中,我們描述了組成FARRA PAC的感知和執行處理器,包括我們采用的任務和基于信息的目標函數。在第10.5節中,我們提供了比較優化方法的機載雷達仿真結果,在第10.6節中,我們展示了CREW測試平臺的結果。最后,第10.7節介紹了這項工作的結論。

完全自適應雷達框架

單個PAC的FAR框架是在[18, 27]中開發的,在此總結一下。圖10.1是一個系統框圖。PAC由感知處理器和執行處理器組成。PAC通過硬件傳感器與外部環境互動,通過感知處理器和執行處理器與雷達系統互動。感知處理器接收來自硬件傳感器的數據,并將其處理為對環境的感知。該感知被傳遞給雷達系統以完成系統目標,并傳遞給執行處理器以決定下一步行動。執行處理器接收來自感知處理器的感知以及來自雷達系統的要求,并解決一個優化問題以決定下一個傳感器的行動。執行處理器通知硬件傳感器下一次觀察的設置,傳感器收集下一組數據,然后循環往復。

圖10.1: 單一PAC FAR框架

付費5元查看完整內容

認知或完全自適應雷達(FAR)是一個受生物系統啟發的研究領域,其重點是開發一個能夠自主適應其特性的雷達系統,以實現各種不同的任務,如改進環境感知和光譜靈活性。FAR框架在一個軟件定義的雷達(SDR)系統和模擬感知行動周期(PAC)的環境中實現了一個動態反饋回路(感知、學習、適應)。FAR框架在SDRs上的實現依賴于基于求解器的優化技術,用于其行動選擇。然而,隨著優化復雜性的增加,對解決方案收斂的時間產生了嚴重影響,這限制了實時實驗。此外,許多 "認知雷達 "缺乏記憶組件,導致對類似/熟悉的感知進行重復的優化程序

利用現有的FAR框架模型,在神經網絡的啟發下進行了完善。通過使用神經網絡、機器學習的一個子集和其他機器學習的概念,對應用于單一目標跟蹤的FAR框架基于求解器的優化組件進行了替換。靜態前饋神經網絡和動態神經網絡在模擬和實驗環境中被訓練和實施。神經網絡和基于求解器的優化方法之間的性能比較表明,基于靜態神經網絡的方法具有更快的運行時間,這導致了更多的感知,有時通過較低的資源消耗獲得更好的性能。還對靜態前饋神經網絡、動態遞歸神經網絡和求解器的模擬結果進行了比較。這些比較進一步支持了神經網絡能夠通過納入學習為認知雷達提供記憶組件的概念,從而走向真正的認知雷達。還進行了額外的研究,以進一步顯示神經網絡在雷達快速生成波形的應用中的優勢。

FAR框架也從單目標跟蹤FAR框架擴展到多目標跟蹤。FAR框架的多目標實現顯示了自適應雷達技術在多目標環境中的優勢,由于場景中存在的目標數量增加以及需要解決所有目標,復雜性也隨之增加。由于多目標環境,對現有的成本函數和探測/跟蹤框架進行了改進和補充。實驗和模擬結果證明了FAR框架的好處,它使一個穩健的自適應算法能夠在多目標環境下改善跟蹤和有效的資源管理。

除此之外,分層完全自適應雷達(HFAR)框架也被應用于需要執行多個任務系統的資源分配問題。分層完全自適應雷達的任務靈活性(HFAR-TF)/自主決策(ADM)工作將HFAR框架應用于一個需要參與平衡多項任務的系統:目標跟蹤、分類和目標意圖辨別("朋友"、"可能的敵人 "和 "敵人")。

本博士論文的目標是將這些目標結合起來,形成一個建立改進當前認知雷達系統的方法的基礎。這是通過融合機器學習概念和完全自適應雷達理論來實現的,以實現真正的認知雷達的實時操作,同時也將自適應雷達概念推進到新的應用中

第一章:簡介

1.1 概述

現代雷達系統的發展促進了軟件定義雷達(SDR)系統能夠實現動態反饋回路行為,與傳統雷達不同。傳統雷達的前饋性質依賴于感知環境的假設特性,產生固定的參數設置,以保證預定的信號干擾加噪聲比(SINR)或雷達任務性能。然而,動態/變化的環境會導致任務性能下降或系統資源的管理不善。缺乏對雷達前端特性的自適應控制會導致雷達后端的信號處理工作增加,嚴重依賴雷達操作員或根據最壞情況設置靜態的雷達系統參數。

完全自適應雷達(FAR)框架旨在利用現代SDR系統實現的傳感器參數多樣性,允許自主適應雷達波形特征,以實現更好的環境感知和雷達任務性能。FAR框架的自主性質也轉向將雷達操作員的角色轉變為咨詢角色,以及減少用于目標信息提取的額外信號處理負擔。

FAR框架通過試圖模仿動物和人類中存在的認知的神經科學概念來實現自主適應。正如[2,3,4,5]所討論的,認知過程必須包括五個主要元素:感知、注意和分析(智能)、行動和記憶。在[6]中,Haykin討論了傳統主動雷達、FAR和認知雷達之間的區別。 雖然FAR能夠通過反饋鏈路將接收機感知的環境與發射機的波形探測聯系起來,實現對環境的更好感知,但由于缺乏 "真正"學習所需的長期記憶,它的智能受到限制。

為了在認知雷達處理中進行優化,經常使用非線性函數。這些非線性函數在優化塊中實現,可以通過非線性約束目標函數的最小化進行雷達參數選擇和更新。對于FAR框架,這種 "執行優化"是在一個 "執行處理器塊 "中實現的,它試圖在服務質量(QoS)方法中平衡捕捉雷達系統基于任務的性能(性能成本)和傳感器資源消耗(測量成本)的成本函數。

在FAR框架中,執行優化被視為最關鍵的組成部分。在FAR框架中,通過結合注意力和分析,利用目標狀態的跟蹤和過去觀察的先驗知識(記憶)來選擇最佳參數指數選擇,執行處理器實現了"有限學習"。由于執行處理器中調用的傳感器參數選擇的性質,雷達波形參數被映射到雷達任務和目標性能上,給定的是先驗知識。此外,由于這種基于優化的適應性,隨著優化的復雜性增加,解決收斂的時間也在增加,因此限制了實時能力。

在概念上與FAR相似,機器學習是人工智能下的一個研究領域,它研究人類如何獲得知識,或學習,并在機器中表示這些概念。機器學習的一個子課題是神經網絡,通過它們的能力來模擬和實現學習過程,關聯、模式識別和關系建模都是神經網絡的有效任務,它可以用來提供對系統處理的較低影響,并通過識別/記憶開始學習。

1.2 動機和貢獻

學習被證明是認知系統中的一個關鍵組成部分,導致人們相信學習是認知雷達的一個主要組成部分。在[5]中,學習被定義為使用過去的信息來提高一個人的局部成功度。 然而,為了充分地從記憶和行動中學習,實時能力和性能必須是可行的。正如前面所討論的,由于用于行動選擇的優化,可以看出,隨著問題的復雜性增加,優化的計算成本也在增加。高計算成本和缺乏記憶對實現 "正式 "認知系統構成挑戰。

在FAR和認知雷達研究領域已經取得了許多進展:然而,大多數集中在缺乏長期記憶和聯想的自適應系統上。同樣,在基于神經網絡和機器學習的雷達研究方面也取得了許多進展,但大多數集中在基于分類和圖像識別的問題上。 本博士研究將著重于展示包括基于回歸的神經網絡如何通過降低對系統處理的影響來改善FAR的現有性能,并通過包括更強的記憶概念和將其擴展到展示學習來幫助認知雷達任務的執行,從而促成開發一個 "真正 "的認知系統。

這里討論的工作對認知雷達領域的貢獻如下

  • 通過用前饋神經網絡取代執行處理器中的優化組件,以降低對系統處理的影響并整合其固有的識別/記憶組件,開發了一個神經網絡啟發的FAR框架,即基于神經網絡控制的全適應雷達(FAR-NN)。

  • 收集了不同參數適應情況下的模擬和實時實驗結果,并對局部解算器的實施和神經網絡進行了比較,結果表明靜態前饋神經網絡能夠實現較低的測量成本、更快的優化時間和類似的執行成本性能。

  • 通過在每個傳感器感知行動周期(PAC)的 "執行處理器 "中模擬傳感器參數選擇,在分層全自適應雷達(HFAR)框架中實施靜態前饋神經網絡,以降低由于執行多個優化而對系統處理的影響。

  • 通過對傳感器參數選擇的模擬,在FAR框架中實施了一個動態長短期記憶遞歸神經網絡(LSTM-RNN),將基于狀態的對不斷變化的環境的適應性和更強的記憶概念納入神經網絡激勵的FAR框架的優化部分,FAR-NN。

  • 開發了一個LSTM-RNN,用于在動態頻譜擁擠的環境中生成低延遲、接近最佳的雷達頻率缺口波形。

  • 將LSTM-RNN與現有的專門解算器 "減少誤差算法"(ERA)進行比較,其波形生成的仿真結果表明,網絡和算法的波形設計結果相似,LSTM-RNN生成波形的時間減少。

  • 將現有的全適應雷達單目標跟蹤(FAR-STT)框架擴展到全適應雷達多目標跟蹤(FAR-MTT)的實現中,修改了目標函數和擴大了多目標環境的Fisher信息矩陣/Cramer Rao Bound度量。

  • 收集了模擬和實驗結果,以證明將完全自適應雷達方法應用于多個目標跟蹤的好處,即能夠實現目標分離并保持單個目標的跟蹤,同時消耗較少的測量資源。

  • 為一個需要執行多種任務[例如:目標跟蹤、分類和目標意圖辨別(朋友、可能的敵人和敵人)并自主分配雷達資源的雷達系統開發一個HFAR框架。

  • 收集的模擬結果表明,通過使用自適應波形參數與固定參數集,將完全自適應的雷達方法應用于一個從事多種任務的系統的好處。

  • 突出了使用完全自適應雷達概念的模擬和實驗演示,以證明認知雷達概念的可行實現。

1.3 概要

本論文的其余部分組織如下。

第二章討論了基礎雷達、全自適應雷達、優化、神經網絡和統計學等與論文中提出的工作相關的背景。

第三章對認知雷達和神經網絡領域的類似工作進行了調查。

第四章討論了本工作中使用的全自適應雷達建模和模擬(FARMS)環境和算法,以及用于驗證模擬結果和實驗集合的實驗測試平臺的簡要概述。

第五章討論了神經網絡啟發的FAR框架的實現,以及與以前FAR和HFAR實現中使用的局部求解器的比較結果。

第六章回顧了一種用于快速生成缺口波形的神經網絡方法,并與現有的專門求解器進行了比較。

第七章討論了將FAR框架擴展到多目標環境中。模擬和實驗結果都被收集起來,以證明自適應雷達在多目標跟蹤環境中的優勢。

第八章討論了全適應性雷達的發展,即多功能雷達系統的問題,其中HFAR框架被應用于需要參與平衡多種任務的雷達系統:目標跟蹤、分類和目標意圖的辨別(朋友、可能的敵人或敵人)。

第九章總結了論文的結果,并給出了基于這項工作的未來研究領域。

附錄A介紹了FAR框架中使用的局部求解器與全局求解器程序的可靠性的進一步細節。

附錄B介紹了第七章介紹的FAR-MTT工作中使用的Fisher信息矩陣推導和預白化推導的進一步細節。

付費5元查看完整內容

摘要

可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。

引言

根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。

可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:

  • 透明度是指人類跟蹤和理解模型創建過程的可能理解程度。這就是從數據中提取信息,轉化為推理參數的表現形式。DL前饋網絡由于其基于大數據集的迭代學習過程和錯誤向各層的遞歸傳播而缺乏這一特性。
  • 可解釋性是指對模型本身的理解程度,即從輸入數據到預測結果的信息流可以被理解。由于涉及的參數數量和層的層次結構,這對標準網絡來說是不可行的。
  • 可解釋性是指對特定預測結果進行解釋的可能性程度。也就是說,用戶可以看到與輸入數據的一致性,在某種程度上可以看到是否存在因果關系。

XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。

雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。

本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。

付費5元查看完整內容
北京阿比特科技有限公司