亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

【導讀】慕尼黑大學開設的《高級深度學習》技術課程,重點介紹計算機視覺的前沿深度學習技術。最新一期介紹了《生成式對抗網絡》進展,講述了GAN的知識體系,值得關注。

付費5元查看完整內容

相關內容

【導讀】來自加州大學圣地亞哥分校《計算機視覺中的領域自適應》中生成式對抗網絡GAN介紹

付費5元查看完整內容

【導讀】Pieter Abbeel 是加州大學伯克利分校的教授,伯克利機器人學習實驗室的主任,其新開課程CS294深度無監督學習包含兩個領域,分別是生成模型和自監督學習。這個15周的課程包含視頻PPT能資源,有助于讀者對深度學習無監督的理解。最新一期是生成式對抗網絡Generative Adversarial Networks的課程,共有257頁ppt,包括GAN, DC GAN, ImprovedGAN, WGAN, WGAN-GP, Progr.GAN, SN-GAN, SAGAN, BigGAN(-Deep), StyleGAN-v1,2, VIB-GAN, GANs as Energy Models,非常值得關注!

目錄內容:

  • 隱式模型的動機和定義
  • 原始GAN (Goodfellow et al, 2014)
  • 評估: Parzen、Inception、Frechet
  • 一些理論: 貝葉斯最優鑒別器; Jensen-Shannon散度; 模式崩潰; 避免飽和
  • GAN進展
  • DC GAN (Radford et al, 2016)
  • 改進GANs訓練(Salimans et al, 2016)
  • WGAN, WGAN- gp, Progressive GAN, SN-GAN, SAGAN
  • BigGAN, BigGAN- deep, StyleGAN, StyleGAN-v2, VIB-GAN
  • 創意條件GAN
  • GANs與申述
  • GANs作為能量模型
  • GANs與最優傳輸,隱式似然模型,矩匹配
  • 對抗性損失的其他用途:轉移學習、公平
  • GANs和模仿學習
付費5元查看完整內容

本課程涉及深度學習和表示學習的最新技術,重點是有監督和無監督的深度學習、嵌入方法、度量學習、卷積網和遞歸網,并應用于計算機視覺、自然語言理解和語音識別。

第五講:

第六講:

第七講:

付費5元查看完整內容
北京阿比特科技有限公司