本SpringerBrief介紹了機器學習的基本原理,以及如何部署各種深度學習工具和技術來應對和解決網絡安全行業面臨的某些挑戰。通過實施創新的深度學習解決方案,網絡安全研究人員、學生和從業者可以分析模式,學習如何防止網絡攻擊,并對不斷變化的惡意軟件行為做出響應。本簡介中介紹的知識和工具還可以幫助網絡安全團隊在預防威脅和實時響應主動攻擊方面更加主動。它可以減少花在日常任務上的時間,使組織能夠更有策略地使用資源。簡而言之,本簡報中提供的知識和技術可以幫助使網絡安全更簡單、更積極、更便宜、更有效
//link.springer.com/book/10.1007/978-3-031-15893-3
這本教科書介紹了時間序列分析和預測的方法和技術,并展示了如何使用Python實現它們和解決數據科學問題。它不僅涵蓋了常用的統計方法和時間序列模型,包括ARMA、SARIMA、VAR、GARCH、狀態空間和(非)平穩、多元和金融時間序列的馬爾可夫切換模型,還包括現代機器學習程序和時間序列預測的挑戰。它提供了時間序列分析原理和Python編程的有機結合,使讀者能夠學習方法和技術,同時練習編寫和運行Python代碼。它的數據驅動方法來分析和建模時間序列數據,幫助新學習者可視化和解釋原始數據及其計算結果。本書主要面向具有概率和統計學本科知識的統計學、經濟學和數據科學專業的學生,同樣也會吸引人工智能和數據科學領域的行業專業人士,以及任何對使用Python解決時間序列問題感興趣的人。
這本書集中在使用企業框架和技術的人工智能的應用方面。本書在本質上是應用的,將使讀者具備交付企業ML技術所需的技能和理解。它將對人工智能和數據科學等學科的本科生和研究生,以及從事數據分析和機器學習任務的工業從業者有價值。這本書涵蓋了該領域的所有關鍵概念方面,并為所有感興趣的方面提供了一個基礎來開發他們自己的人工智能應用程序。
//link.springer.com/book/10.1007/978-3-031-04420-5
我們現在開始看到人工智能(AI)在各行各業的廣泛使用。從家庭中的Alexa到未來無人駕駛汽車的承諾。人工智能的許多方面已經從純理論領域過渡到應用領域。因此,不像傳統的大學課程,這本書提供了一個介紹性的指南,那些希望pick up AI,并應用它解決現實世界的問題。我們從未見過圍繞人工智能應用的這么多框架。隨著谷歌、微軟(Microsoft)、IBM、Facebook和英偉達(NVidia)等許多大型組織提供了廣泛的人工智能技術,隨著我們繼續看到人工智能的發展,爭奪市場份額的競賽正在展開。這意味著大大小小的企業都在越來越多地尋求使用這些技術來開始開發解決方案,以解決他們自己獨特的問題。這本書是及時的,因為它的根本目標是彌合組織提供的良好支持框架與任何有學習應用AI愿望的人之間的差距。
本書將為您提供必要的工具,以快速跟蹤端到端人工智能解決方案的發展。這將幫助你構建AI系統來解決古老的問題,甚至生成具有重大和深遠影響的新產品。對于任何正在考慮從事人工智能職業的人來說,現在是最好的開始時機。這本書將向你展示如何使用Scikit-Learn等框架開發傳統AI應用程序,并向你介紹使用谷歌、TensorFlow Serving和Docker的TensorFlow框架進行深度學習(DL)。傳統的機器學習框架將使用RAPIDS進行擴展,以展示如何加速機器學習管道以加快模型部署。這本書將介紹DL算法的深入概念,如卷積神經網絡(CNNs),長期短期記憶(LSTM)網絡,自動編碼器(AE)和生成對抗神經網絡(GANs)。完成這本書,你將有必要的知識,自信地開始在應用人工智能的職業生涯。
《操作反模式,DevOps解決方案》展示了如何在大多數開發人員工作的不完美環境中實現DevOps技術。部分技術教程、部分參考手冊和部分心理手冊,本實用指南向您展示了在您無法靈活地對組織結構進行全面更改時,將DevOps引入您的團隊的現實方法。
DevOps解決方案專注于從下至上的過程改進,包括操作反模式中的所有內容,它對您的團隊是可操作的——從構建流線化的工作流系統到開發儀表板和度量性能正確方面的操作指標。為了更好地理解個人和組織的行為,您還將學習為什么DevOps技術是有效的背后的心理原因。
//file.allitebooks.com/20201107/Operations%20Anti-Patterns,%20DevOps%20Solutions.pdf
找到有合適技能的人。本書闡明了創建高效能數據集成團隊的最佳實踐,使您能夠理解計劃、設計和監視一次性遷移和日常集成系統的技能和需求、文檔和解決方案。
數據的增長是爆炸式的。隨著跨企業系統的多個信息源的不斷到達,將這些系統組合成一個單一的、內聚的、可記錄的單元變得比以往任何時候都更加重要。但是,與其他軟件規程相比,集成的方法有很大的不同,它要求能夠編寫代碼、協作并將復雜的業務規則分解為可伸縮的模型。
數據遷移和集成可能很復雜。在許多情況下,項目團隊將實際的遷移保留到項目的最后一個周末,任何問題都可能導致錯過最后期限,或者在最壞的情況下導致需要在部署后進行協調的數據損壞。本書詳細介紹了如何進行戰略規劃以避免這些最后時刻的風險,以及如何為未來的集成項目構建正確的解決方案。
你會學到什么
這本書是給誰看的
構建相應實踐的執行和集成團隊領導。它也適用于需要額外熟悉ETL工具、集成過程和相關項目可交付成果的集成架構師、開發人員和業務分析人員