算法公平性近年來在數據挖掘和機器學習領域引起了廣泛的關注。到目前為止,現有的研究主要集中在發展量化指標來衡量不同保護組之間的算法差異,以及調整算法輸出以減少這種差異的方法。在本文中,我們提出研究模型差異來源的識別問題。不像現有的解釋方法通常學習特征的重要性,我們考慮特征變量之間的因果關系,并提出了一個新的框架,將差異分解為公平意識的因果路徑的貢獻之和,這些路徑連接敏感屬性和最終預測,在圖上。我們還考慮了當這些路徑中的某些邊的方向無法確定時的情況。我們的框架也是模型無關的,適用于各種數量差異度量。對合成數據集和真實數據集的實證評價表明,我們的方法可以對模型差異提供精確和全面的解釋。
反事實解釋通常是通過對搜索的初始條件敏感的啟發式方法產生的。缺乏性能和魯棒性的保證會妨礙可靠性。在這篇論文中,我們采取了一種嚴謹的方法來解釋樹的集成。我們提倡以“最優”解釋為目標的基于模型的搜索,并提出了有效的混合整數規劃方法。我們表明,隔離森林可以在我們的框架內建模,以將研究重點放在離群值較低的合理解釋上。我們提供了建模重要目標、異構數據類型、特征空間的結構約束以及資源和可操作性限制的附加約束的全面覆蓋。我們的實驗分析表明,提出的搜索方法需要的計算工作量比以前的數學編程算法小數量級。它可以擴展到大的數據集和樹集合,并在幾秒鐘內提供基于明確定義的模型的系統解釋,這些模型求解最優。
最近最優傳輸(OT)理論在機器學習中的幾個應用都依賴于正則化,尤其是熵和Sinkhorn算法。由于矩陣向量乘積在Sinkhorn算法中是普遍存在的,一些工作已經提出使用低秩因子來近似其迭代中出現的核矩陣。另一種方法是在OT問題中考慮的可行耦合集上施加低非負秩約束,不需要對代價或核矩陣進行逼近。這條路線首先由forrow2018探索,他提出了一種為平方歐氏地面成本量身定制的算法,使用了一個代理目標,可以通過正則化的Wasserstein重心機制來解決。在此基礎上,我們引入了一種通用方法,旨在完全通用性地解決具有任意代價的低非負秩約束下的OT問題。我們的算法依賴于低秩耦合的顯式分解,將其作為由公共邊際連接的子耦合因子的乘積; 與NMF方法類似,我們交替更新這些因素。證明了該算法的非漸近平穩收斂性,并通過基準實驗證明了該算法的有效性。
雙曲空間提供了豐富的設置來學習具有優越屬性的嵌入,這些屬性在計算機視覺、自然語言處理和計算生物學等領域得到了利用。最近,有人提出了幾種雙曲線方法來學習推薦設置中的用戶和項目的魯棒表示。但是,這些方法不能捕獲推薦領域中通常存在的高階關系。另一方面,圖卷積神經網絡(GCNs)則擅長通過對局部表示應用多層聚合來捕獲更高階的信息。在本文中,我們提出了一個用于協同過濾的雙曲線GCN模型,以一種新穎的方式將這些框架結合起來。我們證明了我們的模型可以在邊緣損失的情況下有效學習,并證明了雙曲空間在邊緣設置下具有理想的性質。在測試時,我們的模型使用雙曲距離來進行推理,雙曲距離保留了學習空間的結構。我們對三個公共基準進行了廣泛的實證分析,并與一組大型基線進行比較。我們的方法實現了非常具有競爭力的結果,并超過領先的基線,包括歐幾里德GCN對等物。我們進一步研究了雙曲線嵌入的性質,并表明它們對數據提供了有意義的見解。該工作的完整代碼可以在這里://github.com/layer6ai-labs/HGCF。
題目:Interpreting and Unifying Graph Neural Networks with An Optimization Framework
作者:Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, Peng Cui
簡介:圖神經網絡(GNNs)在各種圖分析任務中得到了相當廣泛的關注。設計良好的消息傳遞機制是經典圖神經網絡中最基本的組成成分,并且經驗與實驗證明該部分是非常有效的。雖然傳播機制多種多樣,但基本都是通過沿著網絡拓撲結構聚合節點特征來利用網絡結構與特征信息的。鑒于此,一個問題自然產生:”盡管圖神經網絡有著不同的傳播策略,是否存在一個統一的數學準則,從本質上指導這不同圖神經網絡的傳播過程?如果有的話,是什么?“ 對這個問題較為完善的答案,可以幫助我們從宏觀上有原則地考察不同圖神經網絡之間的關系和差異,并且這樣的數學準則一旦被提出,就能夠幫助我們發現現有圖神經網絡的不足之處,進而激發設計更多新的圖神經網絡。
在本文中,我們致力于建立不同圖神經網絡傳播機制之間的聯系,將他們的傳播過程建模成一個統一的優化問題。分析表明,多種經典圖神經網絡的傳播機制實際上是在優化一個結合了特征擬合約束項和圖拉普拉斯正則化約束項的優化目標,而他們傳播后的節點表示可以隱式地看作是這個統一優化目標的最優解。特征擬合項旨在建立節點表示與原始節點特征之間的關系,通常用于滿足特定圖神經網絡的不同需求。圖拉普拉斯正則化項則是這些圖神經網絡所共享的,它起到拓撲平滑特征的作用。
我們提出的統一優化目標框架,總結了幾種最具代表性的GNN之間的共性,不僅為探索不同GNN之間的關系提供了一個宏觀的視角,也進一步為靈活設計GNN提供了新的機會。傳統上,在提出一種新的圖神經網絡模型時,我們通常側重于設計特定的譜域濾波器或空域聚合策略。現在,統一的優化目標框架為實現這一目標提供了另一種新的途徑,即通過設計傳播目標函數而得到新的圖神經網絡。這樣,我們就清楚地知道傳播過程背后的優化目標,使新設計的圖神經網絡更具有可解釋性和可靠性。舉例來說,本文我們發現現有的工作通常使用非常簡單的圖卷積核來設計特征擬合約束項,因此基于現有的不足開發出兩個具有可調低通和高通濾波器性質的靈活優化目標函數。此外,我們提供了收斂證明和表達能力的比較。在基準數據集上進行的大量實驗表明,基于本文優化框架提出的GNN模型不僅性能優于現有的優化方法,而且能夠很好地緩解過度平滑問題,進一步驗證了采用統一優化框架設計GNN的可行性。
近年來,機器學習發展迅速,尤其是深度學習在圖像、聲音、自然語言處理等領域取得卓越成效.機器學習算法的表示能力大幅度提高,但是伴隨著模型復雜度的增加,機器學習算法的可解釋性越差,至今,機器學習的可解釋性依舊是個難題.通過算法訓練出的模型被看作成黑盒子,嚴重阻礙了機器學習在某些特定領域的使用,譬如醫學、金融等領域. 目前針對機器學習的可解釋性綜述性的工作極少,因此,將現有的可解釋方法進行歸類描述和分析比較,一方面對可解釋性的定義、度量進行闡述,另一方面針對可解釋對象的不同,從模型的解釋、預測結果的解釋和模仿者模型的解釋3個方面,總結和分析各種機器學習可解釋技術,并討論了機器學習可解釋方法面臨的挑戰和機遇以及未來的可能發展方向.
機器學習在許多部署的決策系統中發揮著作用,其方式通常是人類利益相關者難以理解或不可能理解的。以一種人類可以理解的方式解釋機器學習模型的輸入和輸出之間的關系,對于開發可信的基于機器學習的系統是至關重要的。一個新興的研究機構試圖定義機器學習的目標和解釋方法。在本文中,我們試圖對反事實解釋的研究進行回顧和分類,這是一種特殊類型的解釋,它提供了在模型輸入以特定方式改變時可能發生的事情之間的聯系。機器學習中反事實可解釋性的現代方法與許多國家的既定法律原則相聯系,這使它們吸引了金融和醫療等高影響力領域的實地系統。因此,我們設計了一個具有反事實解釋算法理想性質的準則,并對目前提出的所有反事實解釋算法進行了綜合評價。我們的標題便于比較和理解不同方法的優缺點,并介紹了該領域的主要研究主題。我們也指出了在反事實解釋空間的差距和討論了有前途的研究方向。
機器學習作為一種在許多領域實現大規模自動化的有效工具,正日益被人們所接受。算法能夠從數據中學習,以發現模式并支持決策,而不是手工設計的規則。這些決定可以并確實直接或間接地影響人類;備受關注的案例包括信貸貸款[99]、人才資源[97]、假釋[102]和醫療[46]的申請。在機器學習社區中,新生的公平、責任、透明度和倫理(命運)已經成為一個多學科的研究人員和行業從業人員的團體,他們感興趣的是開發技術來檢測機器學習模型中的偏見,開發算法來抵消這種偏見,為機器決策生成人類可理解的解釋,讓組織為不公平的決策負責,等等。
對于機器決策,人類可以理解的解釋在幾個方面都有優勢。例如,關注一個申請貸款的申請人的用例,好處包括:
對于生活受到該決定影響的申請人來說,解釋是有益的。例如,它幫助申請人理解他們的哪些因素是做出決定的關鍵因素。
此外,如果申請人覺得受到了不公平待遇,例如,如果一個人的種族在決定結果時至關重要,它還可以幫助申請人對決定提出質疑。這對于組織檢查其算法中的偏見也很有用。
在某些情況下,解釋為申請人提供了反饋,他們可以根據這些反饋采取行動,在未來的時間內獲得預期的結果。
解釋可以幫助機器學習模型開發人員識別、檢測和修復錯誤和其他性能問題。
解釋有助于遵守與機器生產決策相關的法律,如GDPR[10]。
機器學習中的可解釋性大體上是指使用固有的可解釋的透明模型或為不透明模型生成事后解釋。前者的例子包括線性/邏輯回歸、決策樹、規則集等。后者的例子包括隨機森林、支持向量機(SVMs)和神經網絡。
事后解釋方法既可以是模型特定的,也可以是模型不可知的。特征重要性解釋和模型簡化是兩種廣泛的特定于模型的方法。與模型無關的方法可以分為視覺解釋、局部解釋、特性重要性和模型簡化。
特征重要性(Feature importance)是指對模型的整體精度或某個特定決策最有影響的特征,例如SHAP[80]、QII[27]。模型簡化找到了一個可解釋的模型,該模型緊致地模仿了不透明模型。依存圖是一種常用的直觀解釋,如部分依存圖[51]、累積局部效應圖[14]、個體條件期望圖[53]。他們將模型預測的變化繪制成一個特征,或者多個特征被改變。局部解釋不同于其他解釋方法,因為它們只解釋一個預測。局部解釋可以進一步分為近似解釋和基于實例的解釋。近似方法在模型預測需要解釋的數據點附近抽取新的數據點(以下稱為explainee數據點),然后擬合線性模型(如LIME[92])或從中提取規則集(如錨[93])。基于實例的方法尋求在被解釋數據點附近找到數據點。它們要么以與被解釋數據點具有相同預測的數據點的形式提供解釋,要么以預測與被解釋數據點不同的數據點的形式提供解釋。請注意,后一種數據點仍然接近于被解釋的數據點,被稱為“反事實解釋”。
回想一下申請貸款的申請人的用例。對于貸款請求被拒絕的個人,反事實的解釋為他們提供反饋,幫助他們改變自己的特征,以過渡到決策邊界的理想一面,即獲得貸款。這樣的反饋被稱為可執行的。與其他幾種解釋技術不同,反事實解釋不能明確回答決策中的“為什么”部分;相反,他們提供建議以達到預期的結果。反事實解釋也適用于黑箱模型(只有模型的預測功能是可訪問的),因此不限制模型的復雜性,也不要求模型披露。它們也不一定能近似底層模型,從而產生準確的反饋。由于反事實解釋具有直覺性,因此也符合法律框架的規定(見附錄C)。
在這項工作中,我們收集、審查和分類了最近的39篇論文,提出了算法,以產生機器學習模型的反事實解釋。這些方法大多集中在表格或基于圖像的數據集上。我們在附錄b中描述了我們為這項調查收集論文的方法。我們描述了這個領域最近的研究主題,并將收集的論文按照有效的反事實解釋的固定需求進行分類(見表1)。
題目: Fairness-Aware Explainable Recommendation over Knowledge Graphs
簡介: 最近,人們對公平性的考慮日益受到關注,尤其是在智能決策系統中。可解釋的推薦系統可能會受到解釋偏差和性能差異的困擾。在本文中,我們根據用戶的活動水平分析了不同的用戶組,發現不同組之間的推薦績效存在偏差。結果顯示由于不活躍用戶的培訓數據不足,不活躍用戶可能更容易收到不滿意的推薦,并且由于協作過濾的性質,他們的推薦可能會受到更活躍用戶的培訓記錄的影響,因而受到系統的不公平對待。我們提出了一種啟發式重新排序的公平約束方法,以在對知識圖的可解釋性推薦的背景下減輕這種不公平問題。我們使用基于最新知識圖的可解釋推薦算法對幾個數據集進行了實驗,結果表明,我們的算法不僅能夠提供高質量的可解釋的推薦,而且在幾個方面都減少了推薦的不公平性。