亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

ACM SIGKDD(ACM SIGKDD Conference on Knowledge Discovery and Data Mining,國際數據挖掘與知識發現大會,簡稱 KDD)是數據挖掘領域國際頂級學術會議,今年的KDD大會將于8月23日至27日在線上召開。賓夕法尼亞州立大學ZhenhuiLi, Huaxiu Yao, Fenglong Ma等做了關于小數據學習《Learning with Small Data》教程,116頁ppt涵蓋遷移學習與元學習等最新課題,是非常好的學習材料!

摘要:

在大數據時代,數據驅動的方法在圖像識別、交通信號控制、假新聞檢測等各種應用中越來越受歡迎。這些數據驅動方法的優越性能依賴于大規模的標記訓練數據,而實際應用中可能無法獲得這些數據,即“小(標記)數據”挑戰。例如,預測一個城市的突發事件,發現新出現的假新聞,以及預測罕見疾病的病情發展。在大多數情況下,人們最關心的是這些小數據案例,因此提高帶有小標記數據的機器學習算法的學習效率一直是一個熱門的研究課題。在本教程中,我們將回顧使用小數據進行學習的最新的機器學習技術。這些技術被組織從兩個方面: (1) 提供一個全面的回顧最近的研究關于知識的泛化,遷移,和共享,其中遷移學習,多任務學習,元學習被討論。特別是元學習,提高了模型的泛化能力,近年來已被證明是一種有效的方法; (2) 引入前沿技術,著重于將領域知識融入機器學習模型中。與基于模型的知識遷移技術不同,在現實應用中,領域知識(如物理定律)為我們提供了一個處理小數據挑戰的新角度。具體地說,領域知識可以用來優化學習策略和/或指導模型設計。在數據挖掘領域,我們認為小數據學習是一個具有重要社會影響的熱門話題,將吸引學術界和產業界的研究者和從業者。

目錄:

地址:

//sites.psu.edu/kdd20tutorial/

付費5元查看完整內容

相關內容

異常檢測已經得到了廣泛的研究和應用。建立一個有效的異常檢測系統需要研究者和開發者從嘈雜的數據中學習復雜的結構,識別動態異常模式,用有限的標簽檢測異常。與經典方法相比,近年來深度學習技術的進步極大地提高了異常檢測的性能,并將異常檢測擴展到廣泛的應用領域。本教程將幫助讀者全面理解各種應用領域中基于深度學習的異常檢測技術。首先,我們概述了異常檢測問題,介紹了在深度模型時代之前采用的方法,并列出了它們所面臨的挑戰。然后我們調查了最先進的深度學習模型,范圍從構建塊神經網絡結構,如MLP, CNN,和LSTM,到更復雜的結構,如自動編碼器,生成模型(VAE, GAN,基于流的模型),到深度單類檢測模型,等等。此外,我們舉例說明了遷移學習和強化學習等技術如何在異常檢測問題中改善標簽稀疏性問題,以及在實際中如何收集和充分利用用戶標簽。其次,我們討論來自LinkedIn內外的真實世界用例。本教程最后討論了未來的趨勢。

//sites.google.com/view/kdd2020deepeye/home

付費5元查看完整內容

許多ML任務與信號處理有共同的實際目標和理論基礎(例如,光譜和核方法、微分方程系統、順序采樣技術和控制理論)。信號處理方法是ML許多子領域中不可分割的一部分,例如,強化學習,哈密頓蒙特卡洛,高斯過程(GP)模型,貝葉斯優化,神經ODEs /SDEs。

本教程旨在涵蓋與離散時間和連續時間信號處理方法相聯系的機器學習方面。重點介紹了隨機微分方程(SDEs)、狀態空間模型和高斯過程模型的遞推估計(貝葉斯濾波和平滑)。目標是介紹基本原則之間的直接聯系信號處理和機器學習, (2) 提供一個直觀的實踐理解隨機微分方程都是關于什么, (3) 展示了這些方法在加速學習的真正好處,提高推理,模型建立,演示和實際應用例子。這將展示ML如何利用現有理論來改進和加速研究,并為從事這些方法交叉工作的ICML社區成員提供統一的概述。

付費5元查看完整內容

【導讀】元學習旨在學會學習,是當下研究熱點之一。最近來自愛丁堡大學的學者發布了關于元學習最新綜述論文《Meta-Learning in Neural Networks: A Survey》,值得關注,詳述了元學習體系,包括定義、方法、應用、挑戰,成為不可缺少的文獻。

近年來,元學習領域,或者說“學會學習的學習”,引起了人們極大的興趣。與傳統的人工智能方法(使用固定的學習算法從頭開始解決給定的任務)不同,元學習的目的是改進學習算法本身,考慮到多次學習的經驗。這個范例提供了一個機會來解決深度學習的許多傳統挑戰,包括數據和計算瓶頸,以及泛化的基本問題。在這項綜述中,我們描述了當代元學習的景觀。我們首先討論元學習的定義,并將其定位于相關領域,如遷移學習、多任務學習和超參數優化。然后,我們提出了一個新的分類法,對元學習方法的空間進行了更全面的細分。我們綜述了元學習的一些有前途的應用和成功案例,包括小樣本學習、強化學習和體系架構搜索。最后,我們討論了突出的挑戰和未來研究的有希望的領域。

//arxiv.org/abs/2004.05439

概述

現代機器學習模型通常是使用手工設計的固定學習算法,針對特定任務從零開始進行訓練。基于深度學習的方法在許多領域都取得了巨大的成功[1,2,3]。但是有明顯的局限性[4]。例如,成功主要是在可以收集或模擬大量數據的領域,以及在可以使用大量計算資源的領域。這排除了許多數據本質上是稀有或昂貴的[5],或者計算資源不可用的應用程序[6,7]。

元學習提供了另一種范式,機器學習模型可以在多個學習階段獲得經驗——通常覆蓋相關任務的分布——并使用這些經驗來改進未來的學習性能。這種“學會學習”[8]可以帶來各種好處,如數據和計算效率,它更適合人類和動物的學習[9],其中學習策略在一生和進化時間尺度上都得到改善[10,9,11]。機器學習在歷史上是建立在手工設計的特征上的模型,而特征的選擇往往是最終模型性能的決定因素[12,13,14]。深度學習實現了聯合特征和模型學習的承諾[15,16],為許多任務提供了巨大的性能改進[1,3]。神經網絡中的元學習可以看作是集成聯合特征、模型和算法學習的下一步。神經網絡元學習有著悠久的歷史[17,18,8]。然而,它作為推動當代深度學習行業前沿的潛力,導致了最近研究的爆炸性增長。特別是,元學習有可能緩解當代深度學習[4]的許多主要批評,例如,通過提供更好的數據效率,利用先驗知識轉移,以及支持無監督和自主學習。成功的應用領域包括:小樣本圖像識別[19,20]、無監督學習[21]、數據高效[22,23]、自導向[24]強化學習(RL)、超參數優化[25]和神經結構搜索(NAS)[26, 27, 28]。

在文獻中可以找到許多關于元學習的不同觀點。特別是由于不同的社區對這個術語的使用略有不同,所以很難定義它。與我們[29]相關的觀點認為,元學習是管理“沒有免費午餐”定理[30]的工具,并通過搜索最適合給定問題或問題族的算法(歸納偏差)來改進泛化。然而,從廣義上來說,這個定義可以包括遷移、多任務、特征選擇和模型集成學習,這些在今天通常不被認為是元學習。另一個關于元學習[31]的觀點廣泛地涵蓋了基于數據集特性的算法選擇和配置技術,并且很難與自動機器學習(AutoML)[32]區分開來。在這篇論文中,我們關注當代的神經網絡元學習。我們將其理解為算法或歸納偏差搜索,但重點是通過端到端學習明確定義的目標函數(如交叉熵損失、準確性或速度)來實現的。

因此,本文提供了一個獨特的,及時的,最新的調查神經網絡元學習領域的快速增長。相比之下,在這個快速發展的領域,以往的研究已經相當過時,或者關注于數據挖掘[29、33、34、35、36、37、31]、自動[32]的算法選擇,或者元學習的特定應用,如小樣本學習[38]或神經架構搜索[39]。

我們討論元學習方法和應用。特別是,我們首先提供了一個高層次的問題形式化,它可以用來理解和定位最近的工作。然后,我們在元表示、元目標和元優化器方面提供了一種新的方法分類。我們調查了幾個流行和新興的應用領域,包括少鏡頭、強化學習和架構搜索;并對相關的話題如遷移學習、多任務學習和自動學習進行元學習定位。最后,我們討論了尚未解決的挑戰和未來研究的領域。

未來挑戰:

-元泛化 元學習在不同任務之間面臨著泛化的挑戰,這與傳統機器學習中在不同實例之間進行泛化的挑戰類似。

  • 任務分布的多模態特性
  • 任務族
  • 計算代價
  • 跨模態遷移和異構任務

總結

元學習領域最近出現了快速增長的興趣。這帶來了一定程度的混亂,比如它如何與鄰近的字段相關聯,它可以應用到什么地方,以及如何對它進行基準測試。在這次綜述中,我們試圖通過從方法學的角度對這一領域進行徹底的調查來澄清這些問題——我們將其分為元表示、元優化器和元目標的分類;從應用的角度來看。我們希望這項調查將有助于新人和實踐者在這個不斷增長的領域中定位自己,并強調未來研究的機會。

付費5元查看完整內容

主題: Differential Deep Learning on Graphs and its Applications

簡介: 本教程研究了將微分方程理論引入深度學習方法(稱為微分深度學習)的最新進展,并進一步拓寬了此類方法的視野,重點放在圖形上。我們將證明,圖的差分深度學習是在藥物發現中建立復雜系統的結構和動力學模型以及生成分子圖的有力工具。

嘉賓介紹: Chengxi Zang,博士后研究助理。2019年獲清華大學博士學位,獲清華大學優秀博士學位(前3%)。他自2019年2月加入康奈爾大學,在復雜社會和生物系統的數據驅動動力學建模方面做了大量工作。個人主頁://www.calvinzang.com/index.html

付費5元查看完整內容

強化學習(RL)研究的是當環境(即動力和回報)最初未知,但可以通過直接交互學習時的順序決策問題。RL算法最近在許多問題上取得了令人印象深刻的成果,包括游戲和機器人。 然而,大多數最新的RL算法需要大量的數據來學習一個令人滿意的策略,并且不能用于樣本昂貴和/或無法進行長時間模擬的領域(例如,人機交互)。朝著更具樣本效率的算法邁進的一個基本步驟是,設計適當平衡環境探索、收集有用信息的方法,以及利用所學策略收集盡可能多的回報的方法。

本教程的目的是讓您認識到探索性開發困境對于提高現代RL算法的樣本效率的重要性。本教程將向觀眾提供主要算法原理(特別是,面對不確定性和后驗抽樣時的樂觀主義)、精確情況下的理論保證(即表格RL)及其在更復雜環境中的應用,包括參數化MDP、線性二次控制,以及它們與深度學習架構的集成。本教程應提供足夠的理論和算法背景,以使AI和RL的研究人員在現有的RL算法中集成探索原理,并設計新穎的樣本高效的RL方法,能夠處理復雜的應用,例如人機交互(例如,會話代理),醫學應用(例如,藥物優化)和廣告(例如,營銷中的終身價值優化)。在整個教程中,我們將討論開放的問題和未來可能的研究方向。

付費5元查看完整內容

來自密歇根州立大學的YaoMa, Wei Jin, andJiliang Tang和IBM研究Lingfei Wu與 Tengfei Ma在AAAI2020做了關于圖神經網絡的Tutorial報告,總共305頁ppt,涵蓋使用GNNs對圖結構數據的表示學習、GNNs的健壯性、GNNs的可伸縮性以及基于GNNs的應用,非常值得學習。

摘要

圖結構數據如社交網絡和分子圖在現實世界中無處不在。設計先進的圖數據表示學習算法以方便后續任務的實現,具有重要的研究意義。圖神經網絡(GNNs)將深度神經網絡模型推廣到圖結構數據,為從節點層或圖層有效學習圖結構數據的表示開辟了新的途徑。由于其強大的表示學習能力,GNNs在從推薦、自然語言處理到醫療保健的各種應用中都具有實際意義。它已經成為一個熱門的研究課題,近年來越來越受到機器學習和數據挖掘界的關注。這篇關于GNNs的教程對于AAAI 2020來說是非常及時的,涵蓋了相關的和有趣的主題,包括使用GNNs對圖結構數據的表示學習、GNNs的健壯性、GNNs的可伸縮性以及基于GNNs的應用。

目錄

  1. 引言 Introduction
  • 圖與圖結構數據 Graphs and Graph Structured Data
  • 圖結構數據任務 Tasks on Graph Structured Data
  • 圖神經網絡 Graph neural networks
  1. 基礎理論Foundations
  • Basic Graph Theory
  • Graph Fourier Transform
  1. 模型 Models
  • Spectral-based GNN layers
  • Spatial-based GNN layers
  • Pooling Schemes for Graph-level Representation Learning
  • Graph Neural Networks Based Encoder-Decoder models
  • Scalable Learning for Graph Neural Networks
  • Attacks and Robustness of Graph Neural Networks
  1. 應用 Applications
  • Natural Language Processing
  • Recommendation
  • Healthcare

百度網盤直接下載: 鏈接: //pan.baidu.com/s/1pQC45GLGOtu6T7T-G2Fn4w 提取碼: xrkz

講者介紹

Yao Ma是密歇根州立大學計算機科學與工程專業的博士生。他還在數據科學與工程實驗室(DSE實驗室)擔任研究助理,該實驗室由Tang Jiliang博士領導。他的研究興趣包括網絡嵌入和圖神經網絡在圖結構數據上的表示學習。曾在WSDM、ASONAM、ICDM、SDM、WWW、KDD、IJCAI等頂級會議上發表創新工作。在加入密歇根州立大學之前,他在Eindhoven理工大學獲得碩士學位,在浙江大學獲得學士學位。

Wei Jin是密歇根州立大學計算機科學與工程專業的一年級博士生,導師是Tang Jiliang博士。他的興趣在于圖表示學習。現從事圖神經網絡的理論基礎、模型魯棒性和應用研究。

Jiliang Tang 自2016年秋季以來一直是密歇根州立大學計算機科學與工程系的助理教授。在此之前,他是雅虎研究院的一名研究科學家,2015年在亞利桑那州立大學獲得博士學位。他的研究興趣包括社會計算、數據挖掘和機器學習,以及它們在教育中的應用。他是2019年NSF Career獎、2015年KDD最佳論文亞軍和6個最佳論文獎(或亞軍)的獲得者,包括WSDM2018和KDD2016。他擔任會議組織者(如KDD、WSDM和SDM)和期刊編輯(如TKDD)。他在高排名的期刊和頂級會議上發表多項研究成果,獲得了成千上萬的引用和廣泛的媒體報道。

Lingfei Wu是IBM AI foundation Labs的研究人員,IBM T. J. Watson研究中心的推理小組。

Tengfei Ma現任美國紐約IBM沃森研究中心研究員。

付費5元查看完整內容

WSDM 2020全稱為第13屆國際互聯網搜索與數據挖掘會議(The 13thInternational Conference on Web Search and Data Mining, WSDM 2020),將于2020年2月3日-2月7日在美國休斯敦召開。賓夕法尼亞州立大學ZhenhuiLi, Huaxiu Yao, Fenglong Ma等做了關于小數據學習《Learning with Small Data》教程,124頁ppt涵蓋遷移學習與元學習等最新課題,是非常好的學習材料!

摘要

在大數據時代,我們很容易收集到大量的圖像和文本數據。然而,在一些領域,例如醫療保健和城市計算,我們經常面對現實世界中只有少量(標記的)數據的問題。挑戰在于如何使機器學習算法在處理小數據時仍能很好地工作?為了解決這個挑戰,在本教程中,我們將介紹處理小數據問題的最新機器學習技術。我們特別關注以下三個方面:(1)全面回顧了近年來在探索知識遷移的力量方面取得的進展,特別是在元學習方面;(2)介紹了將人類/專家知識納入機器學習模型的前沿技術;(3)確定了開放的挑戰數據增強技術,如生成性對抗網絡。

百度網盤下載: 鏈接: //pan.baidu.com/s/1j-xvPMB4WwSdiMoDsaR8Sg 提取碼: 8v7y 目錄:

  • 引言 Introduction

  • 從模型進行遷移知識 Transfer knowledge from models

    • 遷移學習 Transfer learning
    • 多任務學習 Multi-task learning
    • 元學習 Meta-learning
    • 應用 Applications
  • 領域專家知識遷移 Transfer knowledge from domain expert

    • Enrich representations using knowledge graph
    • Regularizing the loss function by incorporating domain knowledge
  • 數據增廣 Data augmentation

    • Augmentation using labeled data
    • Augmentation using unlabeled data

地址

講者介紹: Zhenhui Li 是賓夕法尼亞州立大學信息科學與技術終身副教授。在加入賓夕法尼亞州立大學之前,她于2012年在伊利諾伊大學香檳分校獲得了計算機科學博士學位,當時她是數據挖掘研究小組的成員。她的研究重點是挖掘時空數據,并將其應用于交通、生態、環境、社會科學和城市計算。她是一位充滿激情的跨學科研究人員,一直積極與跨領域研究人員合作。她曾擔任過許多會議的組織委員會或高級項目委員會,包括KDD、ICDM、SDM、CIKM和SIGSPATIAL。自2012年以來,她一直定期開設數據組織和數據挖掘課程。她的課程經常受到學生的好評。她獲得了NSF職業獎、研究院青年教師優秀獎和喬治J.麥克默里教學院青年教師優秀獎。

付費5元查看完整內容

“機器會思考嗎”和“機器能做人類做的事情嗎”是推動人工智能發展的任務。盡管最近的人工智能在許多數據密集型應用中取得了成功,但它仍然缺乏從有限的數據示例學習和對新任務的快速泛化的能力。為了解決這個問題,我們必須求助于機器學習,它支持人工智能的科學研究。特別地,在這種情況下,有一個機器學習問題稱為小樣本學習(Few-Shot Learning,FSL)。該方法利用先驗知識,可以快速地推廣到有限監督經驗的新任務中,通過推廣和類比,模擬人類從少數例子中獲取知識的能力。它被視為真正人工智能,是一種減少繁重的數據收集和計算成本高昂的培訓的方法,也是罕見案例學習有效方式。隨著FSL研究的廣泛開展,我們對其進行了全面的綜述。我們首先給出了FSL的正式定義。然后指出了FSL的核心問題,將問題從“如何解決FSL”轉變為“如何處理核心問題”。因此,從FSL誕生到最近發表的作品都被歸為一個統一的類別,并對不同類別的優缺點進行了深入的討論。最后,我們從問題設置、技術、應用和理論等方面展望了FSL未來可能的發展方向,希望為初學者和有經驗的研究者提供一些見解。

付費5元查看完整內容
北京阿比特科技有限公司