本文考慮了一類特殊的多機器人任務分配問題,其中任務對應于定義在特定環境的不同區域的異質多機器人路由問題。我們提出了一個分層規劃器,將這個問題的復雜性分解為兩個子問題:將機器人分配到路由任務的高層問題,以及計算每個子團隊的實際路由路徑的低層問題。規劃者使用圖形神經網絡(GNN)作為啟發式方法來估計特定聯盟在特定路由任務上的子團隊表現。然后,隨著底層問題解決方案的出現,它將估計值迭代細化為實際的子團隊性能。在一個以異構多機器人區域檢查問題為基礎路由任務的測試平臺問題上,我們的經驗表明,我們的分層規劃器能夠計算出最優或接近最優(7%以內)的解決方案,比事先計算所有可能的分配計劃以獲得精確的路由時間的最優基線快16倍左右(平均而言)。此外,我們表明,與其他基線(非學習型)估計器相比,基于GNN的估計器可以在解決方案的質量和計算時間之間提供出色的權衡。
圖 1:應用于我們的測試平臺問題的擬議分層規劃框架。 GNN 首先用于估計不同子團隊檢查環境不同區域所需的時間。高級求解器使用這些估計來計算高級分配,而低級求解器使用專門的路由算法計算實際路徑。然后使用實際任務持續時間來更新高級求解器的 GNN 估計,然后可以使用改進的估計集計算新的分配。
本文考慮了一類特殊的多機器人任務分配問題,其中任務對應于定義在特定環境的不同區域的異質多機器人路由問題。目標是最小化完成所有路由任務所需的時間。這類問題代表了一些場景,在這些場景中,將機器人的子團隊分配到各個區域將是有益的。例如,在跨越非常大的環境的搜索和救援行動中,電池的限制可能使一個機器人不能被用于一個以上的區域。另外,在軍事場景中,戰略區域可能需要在車隊通過之前同時檢查是否有對手存在。作為最后一個例子,考慮一個通信受限的巡邏場景,將子團隊分配到各個區域可以保證機器人將有足夠的組間網絡,以迅速響應對入侵者的檢測。這些類型的問題本質上顯示了一個層次結構:如果我們事先知道每個可能的機器人子團隊完成每個可能的路由任務所需的時間,我們可以首先確定子團隊對感興趣區域的最佳分配,然后只計算該分配的實際子團隊路徑。優化處理第一階段的一個直接方法是預先計算所有可能的子團隊任務分配的路徑,這將提供所有可能的路由時間作為一個副產品。不幸的是,即使不考慮分配問題的組合性,通常情況下,由子團隊分配產生的多機器人路由問題是NP-hard,只有通過計算昂貴的算法方法才能得到一個好的解決方案,例如將路由問題表述為混合整數線性程序(MILP),通常需要幾秒鐘到幾分鐘或幾小時的運行。為了減少整體規劃時間,尋找一個好的分配應該以懶惰的方式解決路由任務問題,從最有希望的子團隊分配給任務開始。然而,知道一個分配的潛在效用通常需要知道它的路由計劃,消除了懶惰方法的優勢。
我們注意到,子團隊的分配只需要知道給定分配的不同路由計劃的成本,而不是實際計劃本身。如果我們能夠估計這些成本,而不同時解決相應的路由問題,我們就可以推遲計算路由計劃,直到決定了一個暫定的分配。
基于這些觀察,我們提出了一個分層規劃器,能夠將原始問題的復雜性分解為兩個自然的子問題:將機器人分配到路由任務的高層次問題,以及只為所有可能分配給子團隊的區域中的一個選定子集計算實際路由路徑的低層次問題。由于多機器人路由問題通常是在圖形表示的環境中定義的,規劃者使用圖形神經網絡(GNN)作為啟發式方法來估計特定聯盟在特定路由任務中的子團隊性能。迭代后,計劃者將這些估計值細化為真正的子團隊性能,因為低層問題的解決方案已經可用。我們引入了一個測試平臺問題,其中有一個異構多機器人區域檢查問題作為基本的路由任務,對此我們再次考慮了基于傳統混合整數線性編程表述的解決方法。圖1顯示了擬議的規劃框架的示意圖。
在包含多達45個機器人和20個檢查區域的路由任務分配問題中,我們的經驗表明,我們的方法總是能夠計算出最優或接近最優(7%以內)的解決方案,比事先計算所有可能分配的計劃以獲得精確的路由時間的最優基線快16倍(平均)。我們還表明,與其他基線(非學習型)估計器相比,基于GNN的估計器在解決方案的質量和計算時間之間提供了一個很好的權衡。
本報告介紹了在三個主要議題方面取得的成果:
對小型無人機系統(SUAS)的分布式團隊進行實驗驗證,以協調執行復雜的行為。
開發了一個現實的多架無人機模擬器,以應用強化學習技術來協調一組小型無人機系統以達到特定目的。
設計并驗證了安裝在無人機上的帶有主動多輸入多輸出(MIMO)毫米波雷達傳感器的融合光學相機。
與驗證SUAS團隊有關的工作提出并實驗測試了我們的態勢感知、分布式SUAS團隊所使用的框架,該團隊能夠以自主方式實時運行,并在受限的通信條件下運行。我們的框架依賴于三層方法:(1)操作層,在這里做出快速的時間和狹窄的空間決定;(2)戰術層,在這里為智能體團隊做出時間和空間決定;以及(3)戰略層,在這里為智能體團隊做出緩慢的時間和廣泛的空間決定。這三層由一個臨時的、軟件定義的通信網絡協調,即使在通信受限的情況下,也能確保各層的智能體小組和團隊之間的信息傳遞稀少而及時。實驗結果顯示,一個由10個小型無人機系統組成的團隊負責在一個開放區域搜索和監測一個人。在操作層,我們的用例介紹了一個智能體自主地進行搜索、探測、定位、分類、識別、跟蹤和跟蹤該人,同時避免惡意碰撞。在戰術層,我們的實驗用例介紹了一組多個智能體的合作互動,使其能夠在更廣泛的空間和時間區域內監測目標人物。在戰略層,我們的用例涉及復雜行為的檢測--即被跟蹤的人進入汽車并逃跑,或者被跟蹤的人離開汽車并逃跑--這需要戰略反應以成功完成任務。
目標搜索和檢測包括各種決策問題,如覆蓋、監視、搜索、觀察和追逐-逃避以及其他問題。我們開發了一種多智能體深度強化學習(MADRL)方法來協調一組飛行器(無人機),以定位未知區域內的一組靜態目標。為此,我們設計了一個現實的無人機模擬器,它復制了真實實驗的動態和擾動,包括從實驗數據中提取的統計推斷,用于其建模。我們的強化學習方法,利用這個模擬器進行訓練,能夠為無人機找到接近最優的政策。與其他最先進的MADRL方法相比,我們的方法在學習和執行過程中都是完全分布式的,可以處理高維和連續的觀察空間,并且不需要調整額外的超參數。
為了給在受限通信條件下運行的SUAS開發一個分布式的分類和協調框架,我們的第一個目標是在無人駕駛飛行器(UAV)上建立一個多傳感器系統,以獲得高探測性能。眾所周知,安裝在無人機上的光學和熱傳感器已被成功用于對難以進入的區域進行成像。然而,這些傳感器都不提供關于場景的范圍信息;因此,它們與高分辨率毫米波雷達的融合有可能改善成像系統的性能。我們提出了一個配備了無源光學攝像機和有源多輸入多輸出(MIMO)毫米波雷達傳感器的下視無人機系統的初步實驗結果。毫米波雷達的三維成像是通過收集通過運動線的數據來實現的,從而產生一個合成孔徑,并使用垂直于運動軌跡的結線MIMO陣列。我們的初步結果顯示,融合的光學和毫米波圖像提供了形狀和范圍信息,最終導致無人機系統的成像能力增強。
多智能體系統(MAS)已經在不同的環境和框架中得到了利用,因此已經成功地應用于許多應用中,以實現不同的目標。事實證明,與建立一個具有任務可能需要的所有能力的單一智能體相比,多智能體系統更具有成本效益。此外,成本并不是采用MASs的唯一驅動因素,例如,安全是另一個重要方面。在惡劣或極端的環境中部署一組智能體,而不是一個人類團隊,可以減少安全風險。此外,與單一智能體的解決方案相比,MAS提供了更多的靈活性和穩健性。靈活性來自于將資源分成不同的小組,而穩健性則來自于一個智能體的關鍵錯誤不一定會危及任務的成功這一事實。請注意,一個任務可能有許多不同的約束和方面,然而,最微不足道的情況是只有一個智能體和一個任務。
這些類型的任務可以由人類操作員計劃,監督任務,而不需要自動計劃器。另一方面,更復雜的任務,即利用大量的異質智能體和任務,以及約束條件(優先權、同步性等),對人類操作員來說并不是那么簡單的計劃。這些復雜的問題給制定一個可行的計劃帶來了巨大的挑戰,更不用說是最好的計劃了。此外,機器人系統中可用的計算平臺的功率增加,允許利用并行任務執行。更具體地說,它允許在傳感、計算、運動和操縱任務中可能的并行性。這反過來又有一個好處,即允許創建更復雜的機器人任務。然而,它的代價是增加了優化任務分配問題的復雜性。為了規避這些問題,需要一個自動規劃器。這些類型的問題是出了名的難解決,而且可能需要太長時間才能找到一個最佳計劃。因此,優化和產生計劃所需的計算時間之間的平衡變得非常重要。
本論文涉及兩個特殊的多機器人任務分配(MRTA)問題配置的正式定義,用于表示多智能體任務規劃問題。更具體地說,本論文的貢獻可以歸納為三類:
首先,這項工作提出了一個模型,以結構化的方式表示不同的問題配置,也被稱為任務。這個模型被稱為TAMER,它還允許以更系統的方式增加新的維度,與以前提出的MRTA分類法相比,擴大了可以描述的問題的數量。
其次,本論文以混合整數線性問題的形式,定義并提供了兩種不同的問題形式,即擴展的彩色旅行推銷員問題(ECTSP)。這些模型在CPLEX優化工具中對選定的問題實例進行了實施和驗證。此外,還設計了一個解決這些復雜問題的次優方法。提出的解決方案是基于遺傳算法(GA)的方法,并與最先進的(和實踐中的)求解器,即CPLEX獲得的解決方案進行比較。與經典方法相比,使用GA進行規劃的優勢在于它具有更好的可擴展性,使其能夠找到大規模問題的解決方案。盡管這些解決方案在大多數情況下是次優的,但它們比其他精確方法獲得的速度要快得多。另一個優勢體現在 "隨時停止 "選項的形式上。在時間緊迫的操作中,重要的是可以選擇停止規劃過程,并在需要時使用次優的解決方案。
最后,這項工作涉及到MRTA問題的一個維度,這個維度在過去沒有引起很多研究的關注。特別是,包括多任務(MT)機器人在內的問題配置被忽視了。為了克服上述問題,首先,對可能實現任務并行的情況進行了定義。此外,還介紹了物理和虛擬任務之間的區別以及它們在并行任務執行方面的相互關系。我們提出并比較了兩個模型。第一個模型以ILP的形式表達,并在CPLEX優化工具中實現。另一個被定義為限制性規劃(CP)模型并在CP優化工具中實現。兩種求解器都在一系列的問題實例上進行了評估。
在大規模系統中,當集中式技術被用于任務分配時,存在著基本的挑戰。交互的數量受到資源限制,如計算、存儲和網絡通信。我們可以通過將系統實現為分布式任務分配系統,在許多智能體之間共享任務來提高可擴展性。然而,這也增加了通信和同步的資源成本,并且難以擴展。
在本文中,我們提出了四種算法來解決這些問題。這些算法的組合使每個智能體通過強化學習改善他們的任務分配策略,同時根據他們過去的經驗,改變他們對系統的探索程度,相信他們當前的策略是最優化的。我們專注于分布式智能體系統,其中智能體的行為受到資源使用限制的制約,限制了智能體的本地知識,而不是全系統的知識。我們在一個模擬環境中評估這些算法,在這個環境中,智能體被賦予一個由多個子任務組成的任務,必須分配給具有不同能力的其他智能體,然后執行這些任務。我們還模擬了現實生活中的系統效應,如網絡不穩定。我們的解決方案顯示,在所考慮的系統配置中,任務分配問題的解決率為理論最優的6.7%。當系統連接受到影響時,它比無知識保留方法提供了5倍的性能恢復,并對多達100個智能體的系統進行了測試,對算法性能的影響小于9%。
在一個分布式任務分配系統(DTAS)中,許多獨立的智能體之間存在著相互作用。這些系統越來越多地出現在廣泛的現實世界應用中,如無線傳感器網絡(WSN)[5, 7, 36, 50]、機器人[12, 46]和分布式計算[38, 48]。這些應用的復雜性和范圍不斷擴大,帶來了許多挑戰,如應對變化、處理故障和優化等。系統性能也必須隨著智能體數量的增長而擴展,能夠在計算或存儲資源的限制下執行任務。下面總結的挑戰在許多不同的學科領域都有,這意味著相關的和實用的解決方案變得更加普遍適用。
任務分配,如何在系統中的智能體中最好地分配任務。一個智能體可能有一個目標,其中包括一個綜合任務,需要其他智能體完成一些子任務[70]。
資源管理,分配和優化資源的使用,以完成一項任務。例如,在物理環境中執行一項功能時管理能源的使用[29, 60, 96]。
動態網絡、智能體發現和通信適應性。智能體必須能夠在連接丟失和創建時相互溝通[6]。
自組織,自主形成結構以完成一個目標。具有剛性結構的解決方案通常不適用于具有許多未知因素的動態系統,因為設計會過于復雜。為了提高智能體在這些情況下的適應性,可以使用自組織的解決方案。[1, 26, 27, 34, 47]。
正式設計的智能體可以在一個被充分理解的系統下執行設定的任務。然而,設計能夠預測大規模、真實世界操作環境中可能發生的各種故障或變化的算法通常是不可行的。此外,隨著系統變得更加復雜,智能體的狀態行動空間大小也呈指數級增長。這個空間代表了它們可能處于的狀態組合的集合,以及它們在這些狀態下可能采取的行動。在部署智能體之前就知道這個空間往往是不現實的,就像了解哪些算法會有最佳表現一樣。引入一個持續更新的關于環境和其他智能體的信息的集中源,可以增加智能體對其狀態行動空間的了解,允許更好的優化。像這樣的方法,如使用協調智能體,專門協調系統中的其他智能體,在分布式軟件架構[39, 41, 49, 66]和機器人學[4, 20]中被使用。然而,在通過集群和共識技術擴展這種方法以增加容錯性時,產生了一個脆弱的中心點。由于其他智能體的互動和通信是通過這些中心化的智能體進行的,擁堵和帶寬飽和問題也會增加。
具有學習增強功能的分布式智能體系統,如多智能體強化學習(MARL),可以提供相同的功能,但分布在各智能體之間,消除協調的焦點,緩解擁堵問題,同時仍然提供知識共享和行動協調,使智能體能夠優化狀態-行動空間。雖然隨著互動智能體數量的增加,我們看到系統內的通信量呈指數級增長,最終使帶寬飽和并耗盡計算資源。還有一個穩定性的期望,即智能體優化的解決方案保持相對穩定,隨著時間的推移,對狀態行動空間的探索需求逐漸減少。在動態系統中,這一點往往不成立。MARL技術也沒有考慮到采取不同類型的行動所涉及的固有風險,這導致了在機器人領域的災難性影響,如一些行動可能有嚴重的物理損壞風險,或在金融系統中可能會產生巨大的損失[33, 40, 57, 87]。
整個問題可以概括為如何在動態多智能體系統中提供有效的任務分配,同時隨著任務數量的增加和智能體可用性的改變,確保可擴展性。所提出的解決方案結合使用了一些算法,允許智能體確定其他已知智能體執行任務的能力,分配這些任務,并根據其當前的知識和探索智能體能力空間的需要執行其他行動。所介紹的算法有:
具有風險影響意識的智能體任務分配(ATA-RIA)算法允許每個智能體選擇系統中其他智能體的一個子集,其依據是它預測這些智能體將在多大程度上幫助完成其整體綜合任務的子任務。他們可以學習這些智能體的最佳任務分配策略,但也可以改變哪些智能體組成的小組來提高性能。
行動-風險概率的獎勵趨勢(RT-ARP)算法使智能體有能力根據一段時間內獲得的獎勵趨勢來改變他們的探索策略。使用這種算法,智能體可以根據他們的歷史表現,增加他們采取有可能對其任務分配策略進行較大改變的行動的可能性。
狀態-動作空間知識-保留(SAS-KR)算法智能地管理智能體用來維護他們所學到的關于狀態-動作空間的信息和他們的行動效果的資源。
鄰居更新(N-Prune)算法有選擇地將智能體從一個智能體考慮的任務分配組中刪除,以限制資源的使用。這種選擇不僅基于一個智能體預測其他智能體對其綜合任務的貢獻有多大,而且還基于它對這種預測的不確定性有多大,因此與ATA-RIA算法的行為相得益彰。
我們通過評估這些算法在一系列模擬的多智能體系統中的表現來測試其有效性。
第2節涵蓋了MARL和多智能體系統領域的相關研究。第3節對問題領域和動機進行了深入分析,第4節和第5節對提出的解決方案和算法的定義進行了探討。我們在第6節中介紹了在系統模擬中對算法性能的評估。最后,我們在第8節中討論了結論和未來的研究。
圖 8. 一個常見級別 WSN 系統示意圖。在圖 8a 中,部署了節點并學習了初始任務優化。在圖 8b 中,ATA-RIA 調整節點的動作以考慮由于電流和通過無人機的運動。在圖 8c 中,節點被高度中斷,一些節點出現故障。 SAS-KR 和 RT-ARP 算法可根據過去的知識和環境穩定時的探索優先級快速重新建立最佳配置。
對機器人群進行規劃是很困難的,因為系統要求是在機器人群層面(即全球)制定的,而控制規則需要在單個機器人層面(即本地)進行編碼。通過數學建模將全局和局部水平聯系起來,或者反過來預測系統行為,一般被認為是群體機器人技術的巨大挑戰。我們建議通過直接在群體層面規劃來解決這個問題。這個解決方案的關鍵是使用異質群體,結合適當的智能體子集,其硬編碼的智能體行為具有已知的全局影響。我們從全局到局部的設計方法允許為自組織任務分配的實例應用組成異質群。我們定義了大量但有限的局部智能體控制器,并將重點放在行為異質群的全局動力學上。用戶為群體輸入所需的全局任務分配,作為分配給任務智能體的固定概率分布。我們提供了一種通用方法,通過數學上推導出異質群體的適當組合來實現所需的群體行為,這些組合近似于用戶的全局要求。我們在幾種任務分配情況下研究了我們的方法,并通過多智能體模擬驗證了我們的結果。所提出的從全局到局部的設計方法并不局限于任務分配問題,它可以為設計其他群體行為的正式方法鋪平道路。
我們研究了不確定環境中的穩健和適應性的最大網絡流量問題,其中網絡參數(如容量)是已知和確定的,但網絡結構(如邊)容易受到對手的攻擊或失敗。我們提出了一個穩健和可持續的網絡流模型,以有效和主動地對抗在預算約束下運作的對手的合理攻擊行為。具體來說,我們引入了一種新的場景生成方法,該方法基于防御者和對手之間的迭代式雙人博弈。我們假設對手總是采取最佳的近視反應(在一些可行的攻擊中)來對付防御者準備的當前流量場景。另一方面,我們假設防御者考慮到對手在之前的博弈迭代中所揭示的所有攻擊行為,以產生一個新的保守的流量策略,該策略對所有這些攻擊是穩健的(最大化)。這種迭代博弈一直持續到對手和管理員的目標都趨于一致。我們表明,防御者要解決的穩健網絡流量問題是NP-hard,而對手的決策問題的復雜性隨著網絡規模和對手的預算值呈指數級增長。我們提出了兩種原則性的啟發式方法來解決大型城市網絡規模下的對抗者問題。在多個合成和真實世界數據集上的廣泛計算結果表明,與四種最先進的基準方法相比,防御者問題提供的解決方案大大增加了通過網絡推送的流量,并減少了預期的流量損失量。
本文的主要貢獻有以下幾點。
1.我們正式定義了計算關鍵基礎設施網絡的穩健和自適應的最大流量策略的問題,即利用一個被破壞的邊緣的流量可能通過有剩余容量的相鄰的邊緣改道的事實。為了解決這個問題,我們提出了一個網絡管理員和對手之間的迭代式雙人博弈,這被稱為網絡流量博弈(NFG)。
2.我們開發了新的優化模型來解決雙方在博弈的每個迭代中的決策問題。管理者的優化模型考慮到對手在以前的迭代中產生的所有攻擊策略,并計算出一個穩健的流量策略,在所有以前的攻擊中,在最壞的情況下使通過網絡推動的流量最大化。對手的決策問題檢查管理員在當前迭代中產生的流量策略,并產生一個攻擊(在給定預算約束下的可行攻擊中),以最佳方式破壞當前流量策略。
3.我們提出了兩種新的啟發式方法,用于解決大型城市網絡規模下的對手的復雜決策問題。第一種啟發式方法是一種加速的貪婪方法,它可以逐步確定要攻擊的最佳邊緣。第二種啟發式方法是一種基于網絡分區的方法,它迭代地確定網絡中要攻擊的一組最佳候選邊,然后在這些候選邊上解決對手的決策問題。
4.我們在多個合成和真實世界的基準數據集上提供了大量的計算結果,以證明我們提出的解決方法可以優雅地擴展到大規模的問題,并且比四個最先進的基準方法顯著增加了通過網絡推送的流量。
本報告著重于2025年混合部隊的任務工程過程。來自OPNAV N9I的最新任務強調了關注使用成本保守的無人系統的必要性。具體來說,重點放在近鄰的競爭對手大國以及在南海的反介入/區域拒止(A2/AD)情況下可能出現的問題。海軍水面作戰中心的任務工程方法被用來確定擬議的替代艦隊架構的具體事件,然后使用作戰模擬和優化模型進行分析。對目前的無人系統,特別是那些正在開發的高技術準備水平無人系統的性能特征和成本的研究進行了匯編。提議的無人系統架構是作為A2/AD問題的解決方案而開發的。然后,無人系統架構通過優化模型運行,以最大限度地提高系統性能,同時最小化成本。然后,架構優化的結果被輸入到建模和仿真中。然后比較每個架構的整體有效性,以找到最有效的解決方案。對結果進行了分析,以顯示預期的任務有效性和利用擬議解決方案的無人架構的擬議成本。最有效的架構包括搜索、反蜂群、運送和攻擊系統。
系統工程分析31組由美海軍作戰司令部戰爭整合處(OPNAV N9I)負責確定一個解決方案,以彌補與大國在2025年的預期能力差距(Boensel 2021)。該解決方案系統必須具有成本效益并能在2025年之前交付。SEA團隊利用任務工程過程來確定候選的未來艦隊架構來解決問題(工程副主任辦公室2020)。
到2025年,如何才能有效地對抗近鄰對手的反介入和區域拒止能力?
以具有成本效益的方式調整目前的能力,并創建一個未來的架構,以加強美國海軍的作戰能力,包括存在、欺騙、ISR以及在反介入和區域拒止環境中的防御和進攻能力。
利用任務工程流程,總體情景被設定在2025年的南海。大國已執行了其九段線的領土要求,并建立了一個反介入/區域拒止(A2/AD)區。大國不斷擴大的艦隊、對人造島嶼的使用、遠距離ASCMs以及對無人系統的擴大使用使美國的水面作戰艦艇處于高風險之中。總體任務是美國海軍DDG通過提高其殺傷力和生存能力,在A2/AD區域內進行FONOPS。在整個方案中,有三個小場景被開發出來。OTH ISR、目標選擇和交戰,威脅無人機蜂群,以及提供目標選擇的威脅無人機ISR資產。
衡量任務成功與否的總體標準是美國海軍部隊在近乎同行的反介入區域拒止環境中的作戰能力。有助于衡量成功的有效性的措施是DDG的生存能力和殺傷力的提高程度與解決方案系統的成本相結合。
為了分析擬議的系統解決方案(SoS)是否能達到既定的成功標準,設計了一個價值體系。利用通用的海軍任務列表,項目組確定了擬議的系統解決方案需要完成的三個二級任務,以完成任務(海軍部,2008)。
對三個選定任務下的后續任務進行了評估,以確定擬議系統需要完成的具體功能。通過這次審查,確定了候選無人系統需要完成的四項高級功能。這些功能是交付、搜索、通信中繼和打擊。為每項功能選擇了性能措施,以用于多屬性價值分析。
多屬性價值分析被用來比較完成四個功能中一個或多個功能的候選系統。一個系統的價值是根據每個性能指標對完成一個特定功能的重要性,給每個性能指標分配一個權重而得出的。權重從1到5不等,其中5表示最重要的MOP。計算MOP和權重的乘積,并將每個乘積相加,以獲得系統的價值。
為了確定可行的候選系統,項目組成員各自研究了一個不同的無人系統,并收集了每個候選系統的性能衡量標準。如果一個特定的無人系統的MOP值不知道,則推斷其值與一個類似的系統相同。如果不存在這樣的類似系統,則使用啟發式方法估計該值。對于每項功能,至少有一個系統符合技術成熟度,可考慮用于2025年的混合部隊。
為了實現所有四個功能,候選系統的組合被排列組合成16個系統簇。每個備選方案的系統價值和成本都被計算出來。系統價值的計算方法是將每個備選方案中的每個系統的價值相加。
為了產生用于比較的替代方案,該團隊使用整數線性規劃生成了架構。這是用Pyomo的優化功能完成的。線性規劃被創建、約束以更好地表示現實,并被解決以生成分別針對性能、預算和替代合約選項進行優化的替代架構。
現代導彈戰可以使用炮擊作戰模型進行評估。這個模型被用來計算每個小場景中的每個SoS備選方案的有效性。結果顯示了超視距ISR平臺的重要性,一個獨立的武器系統來對付敵人的無人機,目前IAMD作戰系統的有限防御能力,以及超視距搜索和瞄準能力。
“大國”和美國都擁有深入的綜合空中和導彈防御。為了證明這種互動,在微軟Excel中使用反二項式函數對不同的交戰進行了建模。每一個擬議的艦隊架構都被輸入到三個小插曲的戰斗模擬中。為了獲得隨機的結果,試驗的數量被設定為300次,每個概率都有一個可能的值范圍。該模型中的自變量可分為防御性或進攻性變量。防御性變量是每個單位的綜合防空和導彈防御武器的殺傷數量和殺傷概率。PLAN的進攻性變量是YJ-18 ASCM和Harpy無人機的命中數。美國海軍的進攻性變量是海上攻擊戰斧、ASCM和特定攻擊無人機的進攻性命中數量。
模擬的結果顯示了擊中敵方水面平臺或美國海軍水面部隊的數量。通過比較建議的系統與基線的命中率,可以得出變化的百分比。在我們的分析中,進攻和防御的有效性被平均加權,允許將進攻和防御百分比變化的高值相加,以計算出高低變化的總百分比。
基于智能體的建模和仿真(ABMS)被用來驗證每個設想的系統架構與所需的MOE。ABMS旨在通過對智能體之間的相互作用進行建模,來捕捉戰爭交戰的隨機性,但又很復雜。進行了蒙特卡洛分析,以收集每個系統性能的個體層面的數據。隨后的統計分析提供了一個途徑,以確定和量化每個擬議的系統架構所實現的改進。為此目的,指揮部:現代行動(CMO),是一個跨領域的現代兵棋推演計算機軟件,旨在模擬戰術到作戰水平的行動,被用作仿真引擎。CMO模擬的是基于規則的智能體,它們相互之間以及與環境之間的互動,包括感興趣的場景中的武器系統(Coyote, YJ-18, Chaff)和平臺(例如PLAN DDG, Luyang)。與多屬性價值分析方法相比,CMO允許對定量的系統MOP進行建模,并在模擬結果中觀察其相對差異。
電子表格戰斗模型模擬的第一個結果是解放軍DDG在三個不同的迭代中對美國海軍DDG的命中率,即只用YJ-18攻擊,只用哈比攻擊,以及YJ-18和哈比同時攻擊。同時使用YJ-18和Harpy的命中率被作為防御性MOE的基線值。接下來,兩種不同的防御性無人機系統被分別加入到作戰模型中。對只有哈比的攻擊和YJ-18與哈比的同時攻擊進行了重復模擬。每個系統的防御性百分比變化是用前面描述的公式計算的。
接下來的結果是美國海軍DDG在三次不同的迭代中擊中PLAN DDG的次數。模擬了僅用MST攻擊、僅用ASUW無人機攻擊以及MST和ASUW同時攻擊的結果。只用MST攻擊的命中率作為進攻性MOE的基線值。接下來,七個不同的運載系統被分別加入到作戰模型中。對僅有ASUW無人機攻擊和同時進行的MST和ASUW無人機攻擊進行了重復模擬。每個投送系統的進攻百分比變化被計算出來。
將同等權重的進攻和防守百分比變化相加,計算出高和低的總變化百分比。根據該模型,期望值是這樣的:在0.95的置信度下,增加SoS將使水面部隊的有效性增加一個介于高值和低值之間的百分比。
總的來說,從ABMS觀察到的性能與從電子表格模型觀察到的性能MOE相關。在所有提議的架構中,都觀察到了防御和進攻MOE的明顯改善。這是預料之中的,因為在DDG上增加任何防御性武器系統應該減少艦隊DDG的直接命中數量。同樣,增加一個具有增強OTH感知能力的進攻性武器系統會增加對目標直接作用的武器數量。
對防御性和進攻性MOE與每一方所消耗的平均武器數量的比率的進一步分析顯示,由于美國海軍DDG上增加了反群武器系統,防御性MOE得到了改善。這種增加被證明是對所有架構的一種有效的廣泛改進。三種提議的架構之間最明顯的差異來自于進攻性MOE(%),其中性能系統優于其他架構。與發射的武器總數相比,預計一個性能更好的系統會向目標發射更少的武器,同時造成更多的命中。
這項工作證明了低成本的無人駕駛威脅系統給傳統水面戰艦帶來的危險,這些系統可以在幾乎沒有警告的情況下進行協調和攻擊,并為船員提供很少的反應時間。為了避免強制增加對峙距離以提高生存能力,有必要使用增程傳感器系統和反無人機系統來彌補預期的能力差距并提供進入被拒絕區域的機會。為了使這些系統可行和安全,高帶寬的通信系統將是必需的。
為了滿足這些需求,建議的解決方案系統利用Dive-LD來運送Coyote無人機平臺。搜索和通信中繼將由兩個VBAT無人機平臺提供。這種平臺組合為每一美元的系統成本提供了最高的進攻和防御能力的提高。叢林狼 "無人機也將作為一個蜂群來防御威脅性無人機群和威脅性無人機ISR資產。增加解決方案系統的采購將提高艦隊的生存能力和殺傷力,并允許在其他艦隊優先領域進行額外投資。
建議通過為無人機平臺配備額外的無源傳感器來改進該系統,以利用電磁頻譜的所有部分,從而提高在所有天氣和戰斗條件下探測敵方威脅的能力。此外,擬議的解決方案系統可以擴展到許多其他領域和任務區,如港口防御和反對出口。
本報告涵蓋了與設計評估人類和智能軟件Agent之間通信有關的問題,這些通信是實現協作關系所必需的。為了使人與Agent之間的互動在動態的現實世界中保持穩定,軟件Agent和人類都必須能夠在任務目標方面溝通他們的整體意圖。由于推理過程、能力和知識庫的不同,人類和Agent并不是人類團隊的模擬。我們討論了有效通信所涉及的技術問題,包括相互透明的模型、自然語言處理(NLP)、人工智能(AI)和可解釋的AI。由于缺乏使人類能夠洞察其隊友心理過程的心智理論,Agent很難預測人類的信息需求和未來行動。涉及多個Agent的協作計劃研究和合成共享心智模型的研究被作為嘗試將人類和Agent整合成一個協同單位典范。然而,我們的結論是,在人類和Agent在復雜的、不確定的任務中像人類團隊一樣通信之前,NLP、可解釋人工智能和人類科學的進展將是必要的。
自主系統的前景和問題都將改變未來系統的動態,這不僅體現在自主系統對社會的影響上,也體現在它們與人類的互動上(《經濟學人》2016;Schaefer等人,2017)。人類和自主系統之間的伙伴關系涉及到將人工和人類融合成一個有凝聚力的系統,這種結合意味著所有的優勢和限制(Bradshaw等人,2009;Chen和Barnes,2014)。自主系統的范圍可以從那些獨立的、只由人類偶爾監控的系統到由人類指導的、受到密切監督的系統(Barnes等人,2017)。能夠自主行動并根據新信息更新行動以實現其目標的軟件系統被確定為智能Agent(IA);Russell和Norvig 2009)。在人類與IA的合作關系中,人類和IA共享決策空間的混合倡議能力,但人類擁有最終的權力,在危險的時間有限的情況下,允許靈活性,同時保持人類的責任(Chen和Barnes 2015;Barnes等人2017)。在大多數情況下,不可能先驗地將每個人分配到動態環境中的特定角色,因為他們的角色可以隨著情況的變化而改變。例如,自適應Agent可以在高工作負荷的任務段中掌握決策主動權,而不需要等待操作者的許可,但在正常的操作中會將決策主動權還給操作者(Chen和Barnes 2014)。一些與任務分配有關的規定性規則可以根據任務的優先級預先設定。其他規則可能會根據情況的緊急程度而改變(例如,在時間期限過后自主擊落來襲導彈[Barnes等人,2017;Parasuraman等人,2007])。然而,在動態環境中,溝通、對意圖的理解和共同的態勢感知(SA)是有效協作的必要條件(Barnes等人,2017;Evans等人,2017;Holder,2018;Chen等人,2018)。
隨著IA復雜性的增加,有效通信的必要性也隨之增加。Cooke(2015)認為,高效的團隊合作關系更多的是取決于有效的互動,而不是擁有廣泛的共享知識庫。除了有一個共同的語言框架,每個團隊成員都必須知道什么時候向他們的伙伴推送信息,什么時候要求提供信息。因此,人類和IA不僅要有任務環境的SA,而且要有彼此角色的SA,以便在沒有公開交流的情況下回應伙伴的要求(Scherri等人,2003;Chen等人,2018)。我們討論三個主要的主題。第一個主題是對人-Agent架構的描述,以及為什么它與人-人團隊不同,強調相互透明度的重要性。接下來,我們討論了人類與人工智能(AI)系統通信所涉及的技術問題,包括多模態交互、語言限制、AI的類型以及可解釋AI(XAI)的重要性,以確保相互理解。最后,我們討論了共享意圖的重要性,以促進操作者和人工智能之間信息交互的自然節奏。
兵棋模擬是一種決策工具,可以為利益相關者分析的場景提供定量數據。它們被廣泛用于制定軍事方面的戰術和理論。最近,無人駕駛飛行器(UAVs)已經成為這些模擬中的一個相關元素,因為它們在當代沖突、監視任務以及搜索和救援任務中發揮了突出的作用。例如,容許戰術編隊中的飛機損失,有利于一個中隊在特定戰斗場景中勝利。考慮到無人機的分布可能是這種情況下的決定性因素,無人機在超視距(BVR)作戰中的位置優化在文獻中引起了關注。這項工作旨在考慮敵人的不確定性,如射擊距離和位置,使用六種元啟發法和高保真模擬器來優化無人機的戰術編隊。為紅軍蜂群選擇了一種空軍經常采用的戰術編隊,稱為line abreast,作為案例研究。優化的目的是獲得一個藍軍蜂群戰術編隊,以贏得對紅軍蜂群的BVR戰斗。采用了一個確認優化的穩健性程序,將紅軍蜂群的每個無人機的位置從其初始配置上改變到8公里,并使用兵棋方法。進行了戰術分析以確認優化中發現的編隊是否適用。
索引詞:優化方法,計算機模擬,無人駕駛飛行器(UAV),自主智能體,決策支持系統,計算智能。
兵棋是在戰術、作戰或戰略層面上模擬戰爭的分析性游戲,用于分析作戰概念,訓練和準備指揮官和下屬,探索情景,并評估規劃如何影響結果。這些模擬對于制定戰術、戰略和理論解決方案非常有用,為參與者提供了對決策過程和壓力管理的洞察力[1]。
最近,無人駕駛飛行器(UAVs)作為一種新的高科技力量出現了。利用它們來實現空中優勢可能會導致深刻的軍事變革[2]。因此,它們的有效性經常在兵棋中被測試和評估。
由于具有一些性能上的優勢,如增加敏捷性、增加過載耐久性和增加隱身能力,無人機已經逐漸發展起來,并在許多空中任務中取代了有人系統[3]。然而,由于戰斗的動態性質,在視覺范圍之外的空戰中用無人系統取代有人平臺是具有挑戰性的。在空戰中,無人機可以被遠程控制,但由于無人機飛行員對形勢的認識有限,它將在與有人平臺的對抗中處于劣勢。然而,這種限制可以通過自動戰斗機動[4]和戰術編隊的優化來克服。此外,使用無人機可以允許一些戰術編隊和戰略,而這些戰術編隊和戰略在有人駕駛的飛機上是不會被考慮的,例如允許中隊的飛機被擊落,如果它有助于團隊贏得戰斗。文獻中最早的一篇旨在優化超視距(BVR)作戰中的飛機戰術編隊的文章[5]表明,空戰戰術是用遺傳算法(GA)進行優化的候選方案。該實施方案采用分層概念,從小型常規作戰單位建立大型編隊戰術,并從兩架飛機的編隊開始,然后是四架飛機,最后是這些飛機的倍數。在模擬中沒有對導彈發射進行建模。當一架飛機將其對手置于武器交戰區(WEZ)的高殺傷概率(Pkill)區域內一段特定時間,簡化的交戰模擬器就宣布傷亡。事實證明,所提出的方法的應用是有效的,它消除了團隊中所有沒有優化編隊的飛機,并為整個優化編隊的飛機團隊提供了生存空間。
Keshi等人[6]使用了與[5]相同的分層概念,從由兩架飛機組成的元素中構建大型戰術編隊。模擬退火遺傳算法(SAGA)被用來優化編隊,使其能夠克服對局部最優解的收斂。對16架飛機的編隊進行了優化,提出的最優解表明SAGA比基本的GA更有效。最后,為了探索一個穩健的SAGA,對不同的馬爾科夫鏈進行了比較,事實證明自調整馬爾科夫電流更適合所提出的問題。
Junior等人[7]提出使用計算機模擬作為一種解決方案,以確定BVR空戰的最佳戰術,使擊落敵機的概率最大化。在低分辨率下使用通用參數對飛機和導彈進行建模,并改編了名為COMPASS的模擬優化算法,模擬了兩架飛機對一架飛機的BVR戰斗。低分辨率模型假定在水平面的二維空間內有一個均勻的直線運動。使用優化的戰術表明,擊落敵機的平均成功率從16.69%提高到76.85%。 Yang等人[8]提出了一種方法來優化飛機對一組目標的最佳攻擊位置和最佳路徑。該工作考慮到飛機能夠同時為每個目標發射導彈,并將飛機與目標有關的攻擊性和脆弱性因素作為評價攻擊位置的指標。一個高保真模擬被用來模擬每個導彈的飛機、雷達、導彈和WEZ的動態特性。這項工作并沒有解決在BVR戰斗場景中優化一組飛機對另一組飛機的編隊問題。
Li等人[9]提出了一種基于指揮員主觀認識的編隊優化方法,即在空戰中目標設備信息不確定的情況下選擇飛機編隊的問題。首先,計算戰斗機的戰斗力,這是通過指揮員的主觀認識評估目標戰斗力的基礎。戰斗機的戰斗力以能力的形式表現出來,包括攻擊、探測、生存能力、通信、電子戰、預警系統等。因此,通過采用前景理論和綜合模糊評估來優化空戰訓練。最后,一個應用實例證明了該方法在小規模空戰中的可行性。作者聲稱,利用戰斗力評估戰斗情況的能力為優化空戰訓練提供了一種新的方法。
?zpala等人[10]提出了一種在兩個對立小組中使用多個無人駕駛戰斗飛行器(UCAVs)進行空戰的決策方法。首先,確定兩隊中每個智能體的優勢地位。優勢狀態包括角度、距離和速度優勢的加權和。在一個團隊中的每個智能體與對方團隊中的每個智能體進行比較后,每個航空飛行器被分配到一個目標,以獲得其團隊的優勢而不是自己的優勢。為一對對立的團隊實施了一個零和博弈。對許多智能體參與時的混合納什均衡策略提出了一種還原方法。該解決方案基于博弈論方法;因此,該方法在一個數字案例上進行了測試,并證明了其有效性。
Huang等人[11]開發了新的方法來處理UCAV編隊對抗多目標的合作目標分配和路徑規劃(CTAPPP)問題。UCAV的編隊是基于合作決策和控制的。在完成目標偵察后,訓練指揮中心根據戰場環境和作戰任務向每架UCAV快速傳輸任務分配指令。UCAV機動到由其火控系統計算出的最佳位置,發射武器裝備。合作目標分配(CTAP)問題通過增強型粒子群優化(IPSO)、蟻群算法(ACA)和遺傳算法(GA)來解決,并在歸因、精度和搜索速度等方面進行了比較分析。在進化算法的基礎上發展了UCAV多目標編隊的合作路徑規劃(CPPP)問題,其中提供并重新定義了獨特的染色體編碼方法、交叉算子和突變算子,并考慮燃料成本、威脅成本、風險成本和剩余時間成本來規劃合作路徑。
Ma等人[12]開展的工作解決了在BVR作戰場景中優化兩組(R和B)無人機對手之間的優勢地位問題。一個無人機ri∈R對一個無人機bj∈B的優勢是通過ri和bj之間的距離、ri的導彈發射距離的下限和上限、ri的高度和bj的高度之差以及ri的最佳發射高度來估計的。決定性的變量是無人機在兩組中的空間分布和每架飛機在這些組中的目標分配。無人機在三維作戰空間BVR中的可能位置被簡化(離散化),通過立方體的中心位置來表示。每個無人機組都有一組立方體。優化問題被建模為一個零和博弈,并被解決以獲得納什均衡。
Ma等人[12]提出的工作沒有使用高保真模擬來分析無人機空間分布的選擇和分配給它們的目標對BVR作戰的影響。高保真模擬對飛機、雷達、導彈及其導彈的WEZ的動態特性進行建模。這些動態特性也影響到BVR作戰時每架飛機的行動觸發,因此也影響到最終的結果。例如,如果在兩組無人機之間第一次沖突后的時間窗口內考慮高保真BVR作戰模擬,新的沖突可能會發生,直到模擬結束。因此,每個在交戰中幸存的無人機將能夠選擇一個新的目標,這取決于可用目標的優勢值。在[12]中沒有考慮與無人機行為有關的不確定性。有關敵方無人機在戰術編隊中的確切位置及其導彈發射距離的信息是行為不確定性的例子。這兩個信息和上面描述的其他信息在BVR戰斗中是相關的:它們直接影響飛機之間的交戰結果。
在這項研究中,我們試圖解決文獻中發現的一些局限性,如低分辨率模擬、與敵人有關的不確定性的處理以及缺乏對優化解決方案的穩健性的確認,旨在提高兵棋結果的質量。我們的目標是驗證哪些藍色蜂群的戰術編隊可以在BVR戰斗中戰勝紅色蜂群。作為一個案例研究,RED蜂群使用了空軍經常采用的戰術編隊,稱為line abreast[13]。為了評估BLUE蜂群解決方案的穩健性,我們解決了新的問題,改變了RED蜂群每架飛機的位置,目的是估計新的RED蜂群編隊對BLUE蜂群的優化戰術編隊的效率的影響。
我們使用自主智能體和高保真計算機模擬來優化BVR戰斗中的無人機戰術編隊,考慮與敵人相關的不確定性,如戰術編隊中的位置誤差和導彈發射距離。統一行為框架(UBF)被采納為創建自主智能體的基礎。飛機和導彈在三維環境中用六個自由度(DoFs)建模。
該程序將在接下來的章節中進一步討論。
現代戰爭的特點是復雜性越來越高,敵手聰明且技術優良。為了解決現代戰爭的一些復雜性,基于機器學習(ML)的技術最近為戰場上的自動化任務提供了合適的手段。然而,配備了ML技術的聰明敵人不僅在戰場上參與公平競爭,而且還利用欺騙和隱蔽攻擊等策略,制造惡意方法來破壞ML算法,獲得不公平的優勢。為了應對這些威脅,自動化戰場系統上使用的ML技術必須能夠強大地抵御敵方的攻擊。
我們在一種稱為“示范學習”(LfD)的強化學習算法的背景下,分析了競爭場景中的對抗學習問題。在LfD中,學習智能體觀察由專家完成的操作演示,以學習快速有效地執行任務。LfD已成功應用于軍事行動,如使用機器人團隊進行自主搜索和偵察,或自主抓取拆除簡易爆炸裝置。然而,惡意的敵人可以通過植入敵對的專家來利用LfD,這些專家要么給出不正確的演示,要么修改合法的演示,從而使學習智能體在任務中失敗。為了解決這個問題,我們首先分析了在LfD框架內對抗專家可以使用的不同的演示修改策略,根據對手的修改成本和修改學習代理對任務性能的影響。然后,我們提出了一個新的概念,利用對手和學習智能體之間的博弈,學習智能體可以使用LfD從潛在的對手專家演示中戰略性地學習,而不顯著降低其任務性能。在AI-Gym環境中,我們對提出的魯棒學習技術進行了評估,該技術通過對雅達利類游戲“LunarLander”中的專家演示進行對抗性修改。
圖1所示。(左)使用LfD學習自動駕駛設置時敵對軌跡對策略的影響。(右)在我們提出的方法中,干凈(綠色)和對抗(紅色)軌跡首先是等分的。然后,在使用選項(金虛線)接受或拒絕軌跡部分后,對每個分區學習策略,或對未分區的軌跡使用傳統的強化學習(藍虛線)。
我們考慮這樣一個場景,學習智能體必須通過從專家給出的任務演示(LfD)中進行強化學習來在環境中執行任務。一些專家可能是敵對的,并修改軌跡演示的意圖,使學習智能體不能正確執行任務,而遵循修改的演示。在本文的其余部分中,為了便于閱讀,我們將對抗性專家稱為專家。LfD框架采用馬爾可夫決策過程(MDP)[12]進行形式化。LfD算法的輸出是一個策略,該策略為執行任務提供狀態到動作映射。RL通過一個叫做訓練的過程學習策略,在這個過程中,它探索環境,觀察在探索過程中收到的狀態-行為-獎勵配對,最后選擇一系列導致更高期望獎勵的狀態-行為-獎勵配對作為它的策略。
專家們的演示以被稱為軌跡的狀態-行動-獎勵元組序列的形式給出。專家軌跡可能是良性的,也可能是敵對的。良性和敵對的專家軌跡分別展示了完成任務的正確和不正確的方式,并幫助或阻礙了學習智能體學習執行任務。專家演示被整合到智能體的學習中,使用名為DAGGER[1]的LfD算法執行任務。DAGGER使用來自專家演示軌跡的監督學習來學習策略,但添加了一個權重參數β,該參數表示學習主體在將軌跡納入其學習策略時的權重或信任度。
算法1。學習器用來接受或拒絕軌跡演示的算法。
算法2。由專家用來修改干凈軌跡的算法。