亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

前言

自 2011 年起,瑞典國防大學 (SEDU) 的國防與安全系統科學部應瑞典國防物資管理局 (FMV) 的要求進行了技術預測。目標是在設定的時間范圍內評估所選技術對瑞典武裝部隊 (SwAF) 的潛在未來軍事用途。

本報告總結

出于2021技術預測的目的,瑞典國防物資管理局和瑞典武裝部隊選擇了德國弗勞恩霍夫研究所的五份報告,并將其交給國防和安全系統科學部門進行分析和評估,時間跨度為2040年。

瑞典國防大學工作組審查了以下研究報告:

  • 對抗性機器學習
  • 高熵陶瓷
  • 大型無人水下航行器
  • 活體傳感器
  • 材料開發中的機器學習

本報告的目的是評估所審查技術的潛在軍事用途,以及它們如何根據提出的概念和情景對瑞典武裝部隊的作戰能力做出貢獻。

軍事效用按以下四種評估之一分類:顯著、中等、可忽略或不確定。

以下技術被評估為可能具有重要的軍事用途:

  • 高熵陶瓷
  • 材料開發中的機器學習
  • 對抗性機器學習

以下技術被評估為可能具有中等軍事用途:

  • 大型無人水下航行器

以下技術被評估為具有不確定的軍事用途:

  • 活體傳感器

圖 1. 軍事用途包括軍事有效性、軍事適用性和可負擔性。軍事有效性維度(級別)對應于 MUAFT 方法中的能力影響評估,而軍事適用性和可負擔性對應于足跡。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

目前,有大量的全動態視頻(FMV)檔案從未被查看過,而且隨著傳感器數量的增加,情況越來越糟糕。加拿大國防部(DND)、加拿大其他機構和盟友的問題基本相同:不具備分析來自監控的全動態視頻數據的人力。為解決此問題,要求有一種易于擴展的分析能力,這種能力與不斷增長的可用視頻傳感器數量成比例地增長。為了解決這個問題,加拿大國防研究與發展部(DRDC)--瓦爾卡蒂爾研究中心及其贊助者加拿大特種作戰部隊司令部(CANSOFCOM),已經開始了一項探索性的舉措,利用深度學習的最新進展來描述圖像和視頻內容。這種新興的能力可以被用來處理FMV,從而為軍事分析人員提供支持。本科學報告描述了用于實時FMV分析的自動視頻分析(LAVA)概念。它描述了科學家們所面臨的工程、創新和研究問題。報告提供了使用機載軍事傳感器進行的多次真實測試的結果。最后,提出了這項技術的潛在開發途徑。

這份研究文件對如何利用深度學習來分析加拿大武裝部隊和其他加拿大機構所掌握的大量FMV進行了深入的分析。該文件提出了一個在現實作戰條件下使用的概念論證,并提供了結果表現、問題、挑戰和未來的方向。這項技術可用于處理FMV檔案和分析實時FMV反饋,以協助情報分析人員。

付費5元查看完整內容

量子技術將量子物理學的原理轉化為技術應用。總的來說,量子技術還沒有達到成熟的程度;然而,它可能對未來的軍事傳感、加密和通信,以及對國會的監督、授權和撥款有重大影響。

1 量子技術的關鍵概念

量子應用依賴于一些關鍵概念,包括疊加、量子比特(qubits)和糾纏。疊加是指量子系統同時存在于兩個或多個狀態的能力。量子位是一種利用疊加原理來編碼信息的計算單元。(經典計算機用比特編碼信息,這些比特可以代表0或1的二進制狀態,而量子計算機用量子比特編碼信息,每個比特可以同時代表0、1或0和1的組合。因此,量子計算機的功率隨著每個量子比特的增加而呈指數級增長)。

美國國家科學院(NAS)將糾纏定義為 "一個系統中的兩個或更多的量子對象可以有內在的聯系,從而使對一個對象的測量決定了對另一個對象可能的測量結果,無論這兩個對象相距多遠"。糾纏是量子技術的一些潛在軍事應用的基礎。然而,由于量子狀態的脆弱性,疊加和糾纏都很難維持,它們可能會被微小的運動、溫度變化或其他環境因素所破壞。

2 量子技術的軍事應用

美國國防科學委員會(DSB),一個獨立的國防部(DOD)科學顧問委員會,已經得出結論,量子技術的三種應用對國防部來說最有希望:量子傳感,量子計算機,和量子通信。DSB的結論是,量子雷達,假設能夠識別物體的性能特征(例如,雷達截面,速度)--包括低可觀察性,或隱形飛機--"不會為國防部提供升級的能力"。

2.1 量子傳感

量子傳感在傳感器內使用量子物理學原理。根據國防部的說法,這是量子技術最成熟的軍事應用,目前 "準備用于任務"。量子傳感可以提供一些增強的軍事能力。例如,它可以提供替代性的定位、導航和計時選項,理論上可以使軍隊在GPS退化或GPS否認的環境中繼續全力以赴地工作。

此外,量子傳感器有可能被用于情報、監視和偵察(ISR)的作用。這種傳感器的成功開發和部署可能會導致潛艇探測的重大改進,并反過來損害海基核威懾力量的生存能力。量子傳感器還可以使軍事人員探測地下結構或核材料,因為它們預計 "對環境干擾極其敏感"。量子傳感器的敏感性同樣有可能使軍事人員探測到電磁輻射,從而增強電子戰能力,并有可能協助定位隱蔽的對手部隊。

2.2 量子計算機

根據美國國家航空航天局的說法,"量子計算機是唯一已知的計算模型,可以提供比今天的計算機更高的指數級速度。" 雖然量子計算機處于相對早期的發展階段,但其中許多進展是由商業部門推動的,可能對人工智能(AI)、加密和其他學科的未來產生影響。

例如,一些分析家認為,量子計算機可以使機器學習(人工智能的一個子領域)取得進展。這種進步可以刺激改善模式識別和基于機器的目標識別。這反過來又能促成更精確的致命自主武器系統的發展,或能夠選擇和打擊目標的武器,而不需要人工控制或遠程操作。啟用人工智能的量子計算機有可能與量子傳感器配對,以進一步加強軍事ISR應用。

此外,量子計算機有可能解密存儲在加密媒體上的機密或受控非機密信息,使對手能夠獲得有關美國軍事或情報行動的敏感信息。一些分析家指出,要打破目前的加密方法,可能需要在量子計算方面取得重大進展。他們的估計表明,要破解目前的加密方法,需要一臺具有約2000萬個量子比特的量子計算機;然而,目前最先進的量子計算機一般不超過256個量子比特。

量子計算機的實際應用可能只有在錯誤率提高和新的量子算法、軟件工具和硬件開發之后才能實現。雖然正如NAS所指出的,"不能保證[這些技術挑戰]將被克服",但一些分析家認為,能夠破解當前加密方法的初始量子計算機原型可能在2030至2040年的時間框架內開發出來。出于這個原因,NAS得出結論:"后量子密碼學的開發、標準化和部署對于最大限度地減少潛在的安全和隱私災難的機會至關重要"。(在部署后量子密碼學之前截獲的信息將不會受到保護)。

2022年5月,拜登政府發布了《關于促進美國在量子計算方面的領導地位,同時減少對脆弱的密碼系統的風險的國家安全備忘錄》(NSM-10),其中 "指示各機構在美國開始將脆弱的計算機系統遷移到抗量子密碼學的多年過程中采取具體行動"。NSM-10指出,國家標準和技術研究所所長和國家安全局局長正在制定并預計在2024年之前公開發布抗量子密碼學的技術標準,此外還列舉了一個國家 "在2035年之前盡可能多地緩解量子風險的目標"。

2.3 量子通信

量子通信--不包括量子密鑰分配([QKD],將在下文中討論)--正處于一個新興的發展階段。量子通信在理論上可以實現量子軍事傳感器、計算機和其他系統的安全聯網,從而提高單個量子系統或經典通信網絡的性能。聯網還可以加強這些系統在射程上的穩健性,從而擴大它們可以部署的潛在環境(即在維持脆弱的量子狀態通常需要的實驗室環境之外)。這可以大大擴展量子通信的軍事用途。

量子密鑰分配是量子通信的一個子集,它利用量子物理學原理對信息進行加密,然后通過經典網絡發送。QKD實現了安全通信,在傳輸過程中不能被秘密截獲。(然而,QKD通信可以在目前長距離傳輸所需的中繼站被截獲)。據報道,中國正在大力投資QKD,并在2016年完成了北京-上海約1250英里的量子網絡的建設。然而,DSB的結論是:"QKD的實施還沒有足夠的能力或安全性來部署給國防部的任務使用。"

3 資金和最近的立法活動

國會已經考慮了量子技術的管理和影響。例如,2019財年國防授權法(NDAA)(P.L. 115-232)第234條指示國防部長--通過國防部研究與工程副部長行事--與私營部門和其他政府機構協調,執行量子技術研究和開發計劃。

此外,FY2020 NDAA(P.L. 116-92)第220條要求國防部制定使用量子技術的道德準則,以及支持量子勞動力和減少與量子技術相關的網絡安全風險的計劃。它還授權每個軍事部門的部長建立量子信息科學(QIS)研究中心,可以 "與適當的公共和私營部門組織合作",以推進量子研究。迄今為止,海軍已指定海軍研究實驗室作為其QIS研究中心,而空軍已指定空軍研究實驗室作為空軍和太空部隊的QIS研究中心。陸軍說它目前不打算建立一個QIS研究中心。

2021財年NDAA(P.L. 116-283)第214條指示各部門編制并每年更新一份量子計算機在未來一到三年內可能解決的技術挑戰清單。該清單目前包括量子化學、優化和機器學習。第214條還指示各部門與中小型企業建立項目,為政府、工業和學術研究人員提供量子計算能力,以應對這些挑戰。第1722條指示國防部對量子計算機帶來的風險以及當前的后量子密碼學標準進行評估。

最后,2022財年NDAA(P.L. 117-81)第105條指示總統通過國家科學技術委員會建立量子信息科學的經濟和安全影響小組委員會,而第229條指示國防部長 "建立一套活動,以加速開發和部署雙重用途的量子能力"。

國防部在最近的預算請求中沒有提供量子研究的細目;然而,根據數據分析公司Govini,國防部在2021財政年度要求為量子技術和研究提供約6.88億美元。

4 給國會的潛在問題

  • 目前量子技術軍事應用的成熟度需要多少資金?如果有的話,美國政府應該在多大程度上投資和研究能夠實現量子軍事應用的技術(例如,材料科學、制造技術)?

  • 量子技術的商業進展在多大程度上(如果有的話)可以被用于軍事應用?

  • 美國競爭者在開發量子技術的軍事應用方面的努力有多成熟?如果有的話,這種努力在多大程度上可以威脅到美國的先進軍事能力,如潛艇和隱形飛機?

  • 正在采取哪些措施來開發抗量子加密技術和保護用現有方法加密的數據?

  • 如果有的話,美國應該采取什么措施,以確保量子勞動力足以支持美國在量子技術方面的競爭力?

付費5元查看完整內容

在加拿大國防研究與發展部(DRDC)05da聯合情報收集和分析能力(JICAC)項目下,本科學報告提出了創新貢獻,為作戰提供先進的情報收集任務支持,作為情報需求管理和收集管理(IRM/CM)能力的一部分。它報告了新型收集任務優化工具的設計,旨在支持收集管理人員處理復雜任務和支持收集資產設施。它總結了新的研究和開發情報收集概念和自動決策支持/規劃能力,以支持/建議收集經理有效和高效的資源分配。以多衛星收集調度用例問題為重點,簡要報告了導致快速、自動和優化收集任務的新技術解決方案概念,提供服務水平的改善和增強及時的態勢感知。從人工智能和運籌學中借用的基本概念,目的是在各種任務、機會、資源能力、時間和成本約束下實現收集價值最大化。報告總結了技術成果,描述了新的快速、自動和優化的收集任務解決方案和原型推薦器,以安排真實/虛擬的多衛星星座。它應對了一些缺陷和挑戰,如短視(以單一任務為重點)或臨時性的情報收集任務分配方法,不適合集中式/分布式的開放和閉環資源管理方法或框架,以確保靜態/動態規劃或處理約束的多樣性/差異性和不確定性管理。本報告還旨在向加拿大軍隊情報指揮部(CFINTCOM)、空間總督(DG SPACE)、加拿大聯合行動指揮部(CJOC)和主要的軍事聯合情報、監視和偵察(JISR)利益相關者提供信息。

對國防和安全的意義

本科學報告提出了適用于天基情報、監視和偵察的多衛星情報收集調度問題的新型收集任務技術概念和技術發現。這項工作與雷達衛星星座任務(RCM)項目的后續舉措和加拿大軍隊(CF)在北極和北方的持久性聯合情報、監視和偵察方面的一些優先事項相吻合,以便及時提出增強情報收集任務的解決方案和工具。它提出了新的科學和技術方法,為低密度、高需求的可部署收集資產提供近乎最佳的情報收集。

1. 引言

針對適當的情報、監視和偵察(ISR)應用領域的具有成本效益的天基情報收集任務,對發展適當的國防情報需求管理和收集管理(IRM/CM)能力至關重要。因此,收集管理,特別是收集任務分配,對于保持加拿大領土、空中和海上領域的準確、及時和持久的態勢感知至關重要。典型的收集管理要求包括在資源有限的情況下進行適應性和響應性收集(CFINTCOM);收集任務分配;規劃執行;傳感器組合優化;支持聯合ISR(JISR)資產的動態執行新任務(CJOC);實時收集規劃以及有效的傳感器提示(DG SPACE),等等。最終的目的是有效地彌補信息需求和信息收集之間的差距,最佳的資源管理主要是由人員短缺、有限的收集任務自動化、成本效益、資源限制和低密度高需求的收集資產(衛星)在一個時間限制的不確定環境中的發展。通過多衛星收集調度問題(m-SatCSP)開展北極情報和監視的基于空間的圖像情報(IMINT),代表了一個典型的相關使用案例。

為處理情報收集任務的缺陷和挑戰而提出的解決方案[1]有很多。最近關于收集任務,特別是多衛星圖像采集調度的公開文獻,在 "多異質衛星任務的收集規劃和調度:調查、優化問題和數學規劃公式"[2]和 "QUEST--多衛星調度問題的新二次決策模型,計算機與運籌學"[3]。以下是對擬議方法的主要局限性的簡要總結。讀者可以參考后面的出版物[2],[3]以了解更明確的細節。基于低密度高需求的集合資產為前提,一般的問題在計算上是困難的。大多數研究貢獻主要限于同質衛星和單一星座情景,主要處理簡單的觀測點目標("點 "區域)任務,并提出新的任務聚類和預處理策略以減輕計算復雜性。已呈現的工作大多忽略了大面積覆蓋的復雜性、及復雜的任務結構、聯合價值任務構成、觀測結果和成像機會質量的不確定性以及常見的操作約束。這些制約因素包括最小任務覆蓋閾值、相互任務排斥、任務優先級和成像成本。目前的采集資產任務分配方案大多提供基于短視啟發式的策略,以規劃或分配采集器任務。在實踐中,最好的資源往往是短視推薦或局部選擇,以完成一個特定的任務,而忽略了其他約束條件(例如,為其他采集請求服務的時間窗口和成像機會)、追求的全局目標和持續進行的部分規劃解決方案質量。因此,ISR資源分配和動態重新分配是臨時性的,因為它們是以單一任務為中心的,而不是采用更全面的任務觀,關注整體任務,更好地利用替代機會,更有效地滿足整體收集要求。擬議的基本收集任務的部分解決方案沒有提供一個健全的資源管理框架,以確保適應性動態規劃或處理約束的多重性/多樣性和不確定性管理。它們也未能展示有價值的分布式規劃和融合的協同作用或整合,同時對支持可重構的傳感器網絡提出很少的指導。一方面,減少感知或高級信息融合與資源分配(RA)任務之間的差距,另一方面,規劃(任務分配)和執行(收集)監測之間的差距,仍然難以實現。

這項工作提出了新的研究和發展情報收集概念和自動決策支持/規劃能力,以支持/建議收集人員有效和高效的資源分配。它旨在開發自動咨詢調度組件和概念驗證原型,以實現有效的收集任務分配。以多衛星圖像采集(IMINT)調度為重點,介紹了導致快速、自動和優化采集任務的新技術解決方案概念,改善提供的服務水平,并增強及時的態勢感知。所設想的問題包括許多新的附加功能和完善的元素,這些元素在公開的文獻中主要是被忽視或忽略的。假設在低密度、高需求的收集資產條件下的m-SatCSP,新的特征包括收集資產的多樣性和敏捷性、任務抽象化、更多的包容性目標和更多的約束多樣性。重新審視的表述涉及抽象的情報收集任務,將單一目標區域(點)的重點明確地包括在大面積覆蓋范圍內,同時考慮多個或虛擬的異質衛星星座,脫離了傳統的同質情景。新的空間和時間依賴性,反映更現實的任務復雜性,放松相互獨立和可分離的假設。它抓住了成像質量、部分任務執行和成功概率等概念,擺脫了對有序行動執行或確定性結果的不現實的假設。該方法還重新審視了任務優先級利用的概念。因此,優先權被用作沖突解決機制,而不是基于優先權的有偏見的短視策略,強加任意的任務部分排序來管理高復雜性需求。設想的問題目標是要捕捉到超越通常區域覆蓋范圍特定任務的性能措施,引入收集質量,考慮到探測成功率、跟蹤質量和識別的不確定性,以提高收集的信息價值。基于最近提出的一個問題陳述,即m-SatCSP的背景[3],將情報請求映射到收集資產成像機會,以實現收集價值最大化,這項工作簡要地擴展了標準確定性問題決策模型,使用常規的混合整數二次規劃優化問題表述[5]。針對基于空間的ISR應用領域,新的優化模型降低了計算復雜性,使得在某些情況下利用精確的問題解決方法成為可能,同時提供了對最優解的約束。在公開文獻中大量報道的傳統特征約束的基礎上,推廣的模型引入了額外的規范,如合適的任務覆蓋閾值、可選的任務互斥、任務優先級、聯合值任務組成、成像/服務時間窗口,以及單個和平均軌道的熱約束。報告了在集中式和分布式決策背景下各種靜態和動態情景下的主要貢獻和創新之處。簡要介紹了為支持收集任務而明確開發的創新模型、求解器和概念驗證原型(推薦器)。

本科學報告總結了技術成果,描述了新的快速、自動和優化的收集任務(改善服務水平,增強態勢感知)解決方案和原型推薦器,為規劃多衛星真實/虛擬星座。它還旨在向CFINTCOM、DG SPACE和CJOC軍事組織通報主要發現,并確定最有希望的收集管理性能要求、技術和工具,容易對正在進行的主要軍事舉措產生潛在影響。這項工作是在2015年12月至2020年3月的DRDC聯合部隊發展(JFD)05da聯合情報收集和分析能力(JICAC)項目下進行的。

本報告概述如下。第2節簡要介紹了m-SatCSP問題陳述。它描述了問題的基本特征,并強調了開環和閉環設定以及集中式和分布式的決策背景。第3節和第4節分別總結了各自的開環(靜態)和閉環(動態)建議的貢獻。簡要介紹和討論了所開發的概念、模型特征、算法或求解器以及主要結果。第5節介紹了在JICAC下明確開發的概念驗證集合任務原型,以檢驗靜態/動態問題。第6節總結了核心貢獻、發現及其潛在影響。最后,在第7節中提出了建議。提出了一些進一步的技術解決方案開發和未來工作擴展的方向。

付費5元查看完整內容

在 2020 年,空中力量(制空權)辯論越來越多地關注新興技術對國防創新和未來戰爭特征的影響。人工智能 (AI) 系統、機器人技術、增材制造(或 3D 打印)、量子計算、定向能量和其他“顛覆性”技術等先進新技術的融合,第四次工業革命 (4IR)為國防應用提供了新的和潛在的重大機會,進而提高了對潛在競爭對手的軍事優勢。當前的大部分辯論可以說將“下一個前沿”技術描述為“不連續”或“破壞性”軍事創新的代名詞——從“工業時代”到“信息時代戰爭”和現在越來越傾向于“自動化時代的戰爭”(Raska,2021 年)。例如,高光譜圖像、計算攝影和緊湊型傳感器設計等先進傳感器技術旨在提高目標檢測、識別和跟蹤能力,并克服傳統的視線干擾(Freitas 等人,2018 年)。具有自適應特性的復合材料、陶瓷和納米材料等先進材料將使軍事裝備更輕,但更適應于復雜環境(Burnett 等人,2018 年)。新興光子技術,包括高功率激光器和光電設備,可能會提供基于量子計算和量子密碼學新級別的安全通信(IISS,2019 年)。

新興技術的融合——即機器人技術、人工智能和機器學習、具有先進傳感器技術的模塊化平臺、新型材料和保護系統、網絡防御和模糊物理、網絡和生物領域之間界限的技術,被廣泛認為對人類的特征具有深遠的影響。未來的戰爭,在空中力量的背景下,有望將新的機器學習算法應用于高速進行信息處理、有人/無人武器平臺和監視系統的混合自動化,以及最終指揮和控制 (C2) 決策(Horowitz,2018;Cummings,2017)。

大型軍工產品不再是技術創新的唯一驅動力;取而代之的是,具有雙重用途潛力的先進技術正在商業領域開發,然后“轉而”用于軍事應用

然而,盡管戰略背景各不相同,但這些新興技術的傳播也引發了類似于過去 40 年提出的理論和政策規定性問題:新興技術的傳播是否真的意味著戰爭中的“破壞性”轉變?這僅僅是進化上的變化嗎?如果新興技術規定了戰爭的顛覆性變化,那么國防資源分配的必要性是什么,包括部隊結構和武器采購要求?包括空軍在內的軍事組織如何利用新興技術為自己謀利?此外,新興技術在應對 21 世紀以不確定性、復雜性和模糊性為特征的安全威脅和挑戰方面的效果如何?

顛覆性敘事的四個十年

在受信息技術飛躍的推動下,“顛覆性”軍事創新敘事和辯論的軌跡已在 IT 驅動的軍事革命 (IT-RMA) 的背景下定義,該革命已通過至少五個階段:(1)1980年代初期蘇聯戰略思想家對軍事技術革命的初步概念發現,(2)1990年代初期美國戰略思想的概念適應、修改和整合,(3)1990 年代中后期對技術的 RMA 辯論,(4) 轉向更廣泛的“防御轉型”,并在 2000 年代初期進行部分實證調查,以及 (5) 從 2005 年起質疑顛覆性敘事的批判性逆轉(格雷,2006 年)。然而,自 2010 年代中期以來,隨著人工智能和自主系統等新技術的加速傳播,人們可能會爭辯說,新的 AI-RMA 或第六次 RMA 浪潮已經出現(Raska,2021 年)。

然而,回想起來,在過去的 40 年里,IT-RMA 的實施也可以說是遵循了一條明顯低于革命性或破壞性的道路,包括對現有能力的漸進式、通常近乎持續的改進(Ross,2010 年)。雖然國防技術、組織和理論方面的重大、大規模和同步的軍事創新是一種罕見的現象,但軍事組織在很大程度上是通過一系列持續的軍事創新取得進展,從小規模創新到大規模創新,這些創新塑造了他們的戰爭行為(Goldman,1999)。雖然這個時代的許多軍事創新,例如網絡中心戰的概念已經成熟,但關于即將到來的“破壞性軍事轉型”的敘事幾乎總是超過了現有的技術、組織和預算能力。此外,不同的概念、技術、組織和作戰創新主要集中在將數字信息技術集成到現有的傳統平臺和系統中(Raska,2016 年)。

國家和非國家行為者都可能使用這種所謂的對抗性機器學習來欺騙對方,使用不正確的數據得出錯誤的結論,并在此過程中改變決策過程

例如,在美國的戰略思想中,顛覆性軍事創新的敘事從 2005 年開始隨著伊拉克和阿富汗戰爭中的作戰挑戰和經驗逐漸淡化。更多批評聲音指向“破壞性”防御轉型的未兌現承諾。 “新思維方式和新戰斗方式”的基本原理幾乎證明了每項防御倡議或提議的合理性,這表明迷失方向而不是明確的戰略(弗里德曼,2006 年)。國防轉型懷疑論者還警告說,通過技術解決復雜戰略挑戰的邏輯有缺陷,同時放棄了潛在敵人或競爭對手的適應能力。簡而言之,由于預算要求和不切實際的能力組合而不是實際的戰略和作戰邏輯,即將發生的國防轉型的破壞性敘事已經變成了一個模棱兩可的想法(雷諾茲,2006 年)。

為什么AI浪潮不同?

然而,新的“支持人工智能”的國防創新浪潮在幾個方面與過去以 IT 為主導的浪潮不同。首先,人工智能支持的軍事創新的傳播速度要快得多,通過多個維度,特別是通過大國之間加速的地緣戰略競爭——美國、中國和較小程度的俄羅斯。大國之間的戰略競爭并不新鮮。它們深深植根于歷史——從公元前三世紀伯羅奔尼撒戰爭期間的雅典和斯巴達大戰略,到二十世紀下半葉冷戰的兩極分化。然而,新興戰略競爭的性質不同于以往戰略競爭的類比。進入 21 世紀,戰略競爭的路徑和模式更加復雜多樣,反映了在不同或重疊規則下的多重競爭,長期的經濟相互依存與核心戰略挑戰并存(Lee,2017)。然而,在爭奪未來霸權的競爭中,技術創新被描述為國際影響力和國家力量的核心來源——產生經濟競爭力、政治合法性和軍事力量(Mahnken,2012 年)。具體來說,美國幾十年來第一次面對一個戰略性的同行競爭對手中國,中國有能力追求和實施自己的 AI-RMA。因此,主要問題不是 AI-RMA 浪潮是否會在戰爭中帶來根本性的不連續性,如果是,如何以及為什么?相反,美國的 AI-RMA 是否可以被相應的中國或俄羅斯 AI-RMA 取消或至少削弱?換言之,技術優勢的差距正在有效縮小,這有效地加速了新技術作為軍事優勢來源的戰略必要性。

新興技術的融合——即機器人技術、人工智能和機器學習、具有先進傳感器技術的模塊化平臺、新型材料和保護系統、網絡防御和模糊物理、網絡和生物領域之間界限的技術,被廣泛認為對未來的戰爭具有深遠的影響

其次,與前幾十年利用一些軍民兩用技術開發主要武器平臺和系統不同,當前的人工智能浪潮在商業技術創新作為軍事創新來源的規模和影響方面有所不同。大型軍工產品不再是技術創新的唯一驅動力;取而代之的是,具有雙重用途潛力的先進技術正在商業領域開發,然后“轉而”用于軍事應用。在這種情況下,新興技術的傳播,包括增材制造(3D 打印)、納米技術、空間和類空間的能力、人工智能和無人機,并不僅限于大國(Hammes,2016 年)。人工智能傳感器和自主武器系統的擴散也在新加坡、韓國、以色列等先進小國和中等強國的防御軌跡上。這些國家現在有潛力開發利基新興技術,以提高其防御能力和經濟競爭力、政治影響力和在國際舞臺上的地位(Barsade 和 Horowitz,2018 年)。

第三,自主和支持人工智能的自主武器系統的擴散,加上新穎的作戰結構和部隊結構,挑戰了人類參與未來戰爭的方向和特征——其中算法可能會影響人類的決策,并設想在未來的戰斗中使用致命自主武器系統(LAWS)。包括空軍在內的先進軍隊正在試驗各種依靠數據分析和戰爭自動化的人機技術。這些技術越來越多地滲透到未來的戰爭實驗和能力發展計劃中(Jensen 和 Pashkewitz,2019 年)。在美國,選定的優先研發領域側重于在各種人機協作中開發人工智能系統和自主武器——例如,支持人工智能的預警系統和指揮與控制網絡,空間和電子戰系統、網絡能力、致命的自主武器系統等。

人工智能系統將越來越有能力在John Boyd的觀察-定向-決策-行動 (OODA) 循環的每一步中簡化 C2 和決策過程

戰略競爭、雙重用途新興技術創新和戰爭中人機交互特征的變化,這三個驅動因素的融合推動了一系列定義 AI-RMA 浪潮的新條件。它的擴散軌跡在本質上也對戰略穩定性、聯盟關系、軍備控制、道德和治理以及最終的作戰行動提出了新的挑戰和問題(Stanley-Lockman,2021a)。例如,關于人工智能系統在使用武力中的作用的國際規范辯論越來越關注法律的傳播和遵守國際人道法原則的能力。隨著技術進步從科幻領域轉向技術現實,各國對引入 LAWS 是否會違反或加強國際法律原則也有不同的看法。面對軍事人工智能應用的法律和道德影響,軍事機構越來越認識到需要解決與安全、道德和治理相關的問題,這對于建立對新能力的信任、管理風險升級和重振軍備控制至關重要。盡管如此,國防部和軍隊在倫理道德方面的努力是狹隘地關注法律還是更廣泛地關注人工智能系統的范圍之間仍然存在緊張關系。因此,包括空軍在內的軍隊需要跟蹤關于人工智能和自主性的不斷演變的觀點,并就對 2020 年代及以后的戰略和作戰環境的影響進行辯論(Stanley-Lockman,2021b)。

對空中力量的影響

在作戰層面,空軍旨在加速整合各種人工智能相關系統和技術,例如多域作戰云系統,從各種來源收集大數據,創建實時作戰圖,本質上是自動化和加速指揮和控制 (C2) 流程(Robinson,2021 年)。在這樣做的過程中,啟用人工智能的作戰云可以識別目標并將它們分配給任何領域中最相關的“射手”,無論是空中、水面還是水下——一些空軍將其概念化為聯合全域指揮與控制 (JADC2) 。部分空軍也在試驗人工智能算法作為“虛擬后座”,它可以有效控制飛機的傳感器和導航,尋找對手,并以此減少機組人員的工作量(Everstine,2020)。在這種情況下,關鍵論點是人工智能系統的進步——可以感知、推理、行動和適應的廣泛程序,包括機器學習 (ML) 系統——其性能隨著時間的推移、數據交互的增加而提高算法性能,以及深度學習( DL)系統——其中多層神經網絡從大量數據中學習——具有“改變空戰行動以及空中力量的構思和使用方式”的潛力(Davis,2021 年)。

具體來說,根據蘭德公司最近的一項研究(Lingel 等人,2020),目前有六類 AI/ML 應用研發,其會對包括空中力量在內的未來戰爭有影響:

(1)計算機視覺——圖像識別——檢測對視覺世界中可用于處理多源智能和數據融合的對象進行分類;

(2) 自然語言處理 (NLP) — 成功理解人類語音和文本識別模式(包括翻譯)的能力,可用于從語音和文本中提取情報,但也可以監控友好通信并引導相關信息以提醒個人或單位;

(3) 專家系統或基于規則的系統——收集大量數據以推薦特定行動以實現作戰和戰術目標;

(4) 規劃系統——使用數據解決調度和資源分配問題,可以針對目標協調選定的空中、太空和網絡資產,并生成建議的分時行動;

(5) 機器學習系統——從與環境的數據交互中獲取知識,可與其他類別的人工智能結合使用,即使 C2 系統在專家知識不可用或最佳策略、技術和程序 (TTP) 未知時學習如何執行任務;

(6) 機器人和自主系統——結合所有或選擇先前類別的 AI/ML 方法,使無人系統與其環境交互;

這些與人工智能相關的類別幾乎適用于空中力量的各個方面,可能會塑造新形式的自動化戰爭:從 C2 決策支持和規劃,人工智能/機器學習可以在日益受限的時期提供推薦的選項或建議;通過數據挖掘能力支持 ISR;后勤和預測性維護,以確保部隊的安全以及平臺和單位的可用性;訓練和模擬;網絡空間行動以檢測和應對先進的網絡攻擊;機器人和自主系統,如無人機,用于從 ISR 到矛尖任務的各種任務,如壓制敵方防空和協同作戰,在空中和陸地打擊行動中整合不同的有人和無人平臺。換句話說,這里的論點是人工智能系統將越來越有能力在John Boyd的觀察-定向-決策-行動 (OODA) 循環的每個步驟中簡化 C2 和決策過程:收集、處理并將數據轉換為統一的態勢感知視圖,同時為推薦的行動方案提供選項,并最終幫助人類采取行動(Fawkes 和 Menzel,2018 年)。

然而,將人工智能系統集成到空中力量平臺、系統和組織中,以將計算機從工具轉變為解決問題的“思考”機器,將繼續帶來一系列復雜的技術、組織和運營挑戰(Raska 等人,2021 年)。其中可能包括開發算法,使這些系統能夠更好地適應環境的變化,從意想不到的戰術中學習并將其應用于戰場。它還要求為這些思考機器設??計道德規范和保障措施。另一個挑戰是技術進步,特別是在軍事系統中,是一個持續的、動態的過程。突破總是在發生,它們對軍事效力和比較優勢的影響可能是巨大的,而且在初期階段很難預測。

然而,最重要的是,關鍵問題是我們可以在多大程度上信任人工智能系統,尤其是在安全關鍵系統領域?正如 Cummings所警告的那樣,“歷史上充斥著類似的戰備承諾如何以代價高昂的系統故障告終的例子,這些案例應該作為一個警示故事”(Cummings,2021 年)。此外,越來越多的研究領域集中在如何通過生成虛假數據來欺騙人工智能系統做出錯誤的預測。國家和非國家行為者都可能使用這種所謂的對抗性機器學習來欺騙對方,使用不正確的數據得出錯誤的結論,并在此過程中改變決策過程。對抗性機器學習的整體戰略影響可能比技術本身更具破壞性(Knight, 2019; Danks, 2020)。

啟用人工智能作戰云用于識別目標并將其分配給任何領域中最相關的“射手”,無論是空中、水面還是水下——一些空軍將其概念化為聯合全域指揮與控制 (JADC2)

從戰術和操作的角度來看,這些復雜的人工智能系統也需要連接在一起——不僅在技術上,而且在組織和操作上。對于許多空軍來說,這是一個持續的挑戰——他們必須能夠有效地(實時)在各種服務和平臺之間集成啟用人工智能的傳感器到射擊者的循環和數據流。這意味著有效地連接多樣化的空軍、陸軍、海軍和網絡戰斗管理; C2,通信和網絡;情監偵;電子戰;定位、導航和授時;使用精確彈藥。雖然選擇的 AI/ML 系統可能會緩解一些挑戰,但相同的系統會產生另一組與確保可信 AI 相關的新問題。因此,有人可能會爭辯說,未來空中力量中人工智能軌跡的方向和特征將取決于相應的戰略、組織和作戰敏捷性,特別是這些技術如何與當前和新興的作戰結構和部隊結構相互作用。

在這種情況下,人類在未來戰爭中的參與程度、改變傳統部隊結構和招募模式的必要性以及將在哪些領域使用武力都是新技術挑戰的問題。空軍正在為這些問題開發自己的而且往往是多樣化的解決方案。與過去一樣,它們的有效性將取決于與戰略持久原則相關的許多因素——將可用的國防資源“轉化”為新軍事能力的目的、方式和手段,并在此過程中創造和維持具有空中作戰能力的部隊來應對各種突發事件。成功實施的主要因素不是技術創新本身,而是持續資金、組織專業知識(即大規模和有效的軍事和商業研發基地)和實施國防創新機構的敏捷性綜合效應(Cheung,2021)。對于空中力量的未來,這意味著擁有能夠提供創新解決方案的人員、流程和系統,同時保持現有的核心能力,從而在日益復雜的戰略環境中提供可行的策略選擇。

作者介紹:

Michael Raska 博士是新加坡南洋理工大學 S. Rajaratnam 國際研究學院軍事轉型項目的助理教授和協調員。他的研究興趣集中在東亞的國防和軍事創新、戰略競爭和賽博戰。他是《軍事創新和小國:創造反向不對稱》(Routledge,2016 年)的作者,也是《國防創新和第四次工業革命:安全挑戰、新興技術和軍事影響》(Routledge,2022 年)的共同主編。他擁有密蘇里南方州立大學國際研究學士學位、延世大學國際關系碩士學位和新加坡國立大學李光耀公共政策學院博士學位,并獲得新加坡國立大學校長研究生學位獎學金。

付費5元查看完整內容

摘要

有效的項目管理有賴于對風險的細致和精確的量化。根據Kaplan和Garrick(1981)的說法,風險是概率和影響。然而,影響往往是多維的,包括進度維度、安全維度、財務維度或技術維度等。本文打算介紹利用統計科學將多個風險維度合并為一個數值。在美國國家航空航天局(NASA)的許多項目中都使用了一種叫做MRISK的多維風險工具來評估和確定風險和緩解措施的優先次序。此外,本文將總結北約盟軍司令部轉型(ACT)目前的風險管理準則,并將告知北約ACT在風險評估和管理方面可以從統計科學中獲益的潛在方式。

MRISK工具是由博思艾倫咨詢公司在NASA蘭利研究中心開發的。我曾作為MRISK的開發者,通過這篇論文,我旨在提高對定量風險評估的認識,并介紹其在北約ACT的潛在應用。博思艾倫咨詢公司撰寫的MRISK原始論文是美國國家航空航天局的專利,并存放在美國國家航空航天局科學和技術信息(STI)庫中。本文所表達的觀點僅代表我個人,不代表我以前或現在的雇主的觀點或意見。

引言

所有的項目,無論其組織、復雜性、時間框架或目標如何,都會有風險。項目管理協會將風險定義為 "一個不確定的事件或條件,如果它發生,會對一個或多個目標產生積極或消極影響"。一個積極的風險被認為是一個機會,而一個消極的風險被認為是一個威脅。大多數情況下,風險管理意味著威脅管理。鑒于,不可能避免項目威脅,有效的項目管理必須包括成功管理它的方法。特別是考慮到減輕風險的缺陷最終會給聯盟帶來大量的資金,以及戰爭能力發展和進展的潛在滯后,它被證明是項目管理的一個重要組成部分。

風險管理包括風險識別、風險評估和風險應對。風險評估階段的目標是定性和/或定量地評估風險的概率和影響。傳統上,風險評估是定性進行的,這意味著它依賴于對單個風險的概率和影響的判斷。判斷可以基于過去的經驗、可比較的項目、或項目主題領域的專業知識。以這種方式進行的風險評估可以由一個人完成,也可以在一個有不同利益相關者和專家的團隊環境中完成。然而,僅僅是定性的風險評估并不總是充分的。

如果風險評估的主要目的是對風險進行優先排序,以確定哪些風險需要進一步研究和應對,那么定性評估就可能是足夠的。相反,如果風險評估需要高度的精確性和更多的結論性評價,那么定量評估與定性評估一起進行將對項目有益。

付費5元查看完整內容

?

對于群體智能中的人類操作員來說,關鍵情況下的決策支持至關重要。自主系統共享的大量數據很容易使人類決策者不堪重負,因此需要支持以智能方式分析數據。為此,使用了用于評估情況和指示可疑行為或統計異常值的自主系統。這增強了他們的態勢感知能力并減少了工作量。因此,在這項工作中,強調為檢測監視任務中的異常而開發的數據融合服務,例如在海事領域,可以適應支持集群智能的運營商。此外,為了使人類操作員能夠理解群體的行為和數據融合服務的結果,引入了可解釋的人工智能 (XAI) 概念。通過為某些決策提供解釋,這使得自主系統的行為更容易被人類理解

作者解決了由于自主系統共享大量數據而導致的信息過載問題。為了緩解這個問題,他們建議通過兩種智能數據分析方式來幫助人類操作員。第一種方法是自動異常檢測,這可能會加強人類操作員的 態勢感知SA 并減少他們的工作量。第二種方法是可解釋的人工智能 (XAI) 概念;它們有可能使群體行為以及異常檢測結果更易于理解。

作者認為,控制一群無人機仍然具有挑戰性。一方面,(半自動化)群體代理“必須決定行動方案”;另一方面,人類操作員必須決定他們的行動,例如與群體互動。提出的建議力求改善人在循環中。考慮到海上監視的應用,使用非固定代理的動態方法具有幾個優點。首先,某些場景只能使用動態方法進行管理;其次,與固定監視傳感器相比,代理更便宜;第三,在多個地點靈活使用代理可以減少操作群體所需的人員數量。然而,情況評估仍然需要知情的操作員。

作者認為,在海洋領域用于船舶分析的異常檢測算法可能適用于引入以下場景的群體。“假設我們有一個群體來支持海上船只,這些船只不僅會收集它們自己的傳感器系統可用的數據,還會收集所有資產的數據。所有來源收集的信息都需要融合成一幅連貫的畫面。這不應僅限于 JDL 數據融合的第一級,而應包括更高級別的數據融合過程,以獲取有關附近所有對象的可用信息。” 數據驅動的方法能夠應對這種情況。文獻提供了三種檢測位置和運動異常的方法:統計解釋為與正常行為相比的異常值;聚類分析聚類相似的軌跡和確切的路線;用于建模正常移動模式的深度學習方法。為了應對更復雜的場景,包括船舶周圍環境(基礎設施、地理、天氣等)在內的算法是必要的。在某些復雜異常的情況下,區分正常和異常行為需要基于規則、基于模糊、多智能體或基于概率圖形模型的算法。對于所有提到的算法類別,作者都指出了大量的示例算法。

一些算法是黑盒模型,因此,它們的解釋對于人類操作員來說是復雜的。XAI 概念可以幫助緩解這個問題。XAI 概念旨在“提供道德、隱私、信心、信任和安全”,并努力在“它已經做了什么、現在正在做什么以及接下來會發生什么”中明確決策。,從而提高了人工操作員的 SA。考慮到 XAI 模型,模型特定方法(僅限于某些數學模型)可以與模型無關(適用于任何類型的模型)方法區分開來。

在目前的貢獻中,重點是與模型無關的方法。考慮到這些,局部解釋方法(解釋整個模型的單個預測結果)可以與全局解釋方法(解釋整個模型的行為,例如以規則列表的形式)區分開來。此外,作者使用特征屬性、路徑屬性和關聯規則挖掘來區分方法。通過特征屬性,“用戶將能夠了解他們的網絡依賴于哪些特征”;方法示例是提供全局和局部可解釋性的 Shapley Additive Explanations (SHAP) 和指示“模型在進行預測時考慮的輸入特征” 的局部可解釋模型無關解釋 (LIME)。路徑集成梯度(PIG,使用局部解釋)等路徑屬性提供了對模型預測貢獻最大的特征,從而深入了解導致決策的推理。關聯規則挖掘(ARM)是另一種使用全局解釋的方法,發現大型數據集中特征之間的相關性和共現。ARM 方法使用簡單的 if-then 規則,因此被認為是最可解釋的預測模型。可伸縮貝葉斯規則列表 (SBRL)、基尼正則化 (GiniReg) 和規則正則化 (RuleReg) 技術被認為適用于監視任務。

作者認為,使用這樣的 XAI 概念,人類操作員(決策者)可以更好地理解、更好地控制和更好地與一群自主代理進行通信,尤其是在具有挑戰性的環境中。總而言之,將異常檢測和 XAI 概念這兩種方法應用于人類在環、用戶對群體智能的理解和信任可能會得到改善。

付費5元查看完整內容

低速、慢速和小型 (LSS) 飛行平臺的普及給國防和安全機構帶來了新的快速增長的威脅。因此,必須設計防御系統以應對此類威脅。現代作戰準備基于在高保真模擬器上進行的適當人員培訓。本報告的目的是考慮到各種商用 LSS 飛行器,并從不同的角度定義 LSS 模型,以便模型可用于LSS 系統相關的分析和設計方面,及用于抵制LSS系統(包括探測和中和)、作戰訓練。在北約成員國之間提升 LSS 能力并將 LSS 擴展到現有分類的能力被認為是有用和有益的。

【報告概要】

在安全受到威脅的背景下考慮小型無人機系統 (sUAS)(通常稱為無人機)時,從物理和動態的角度進行建模和仿真遇到了一些獨特的挑戰和機遇。

無人機的參數化定義包括以下幾類:

  • 類型學,指的是無人機可以飛行的模式;
  • 用于制造無人機的材料;
  • 飛行性能;
  • 螺旋槳種類;
  • 分類;
  • 導航系統;
  • 遠程控制器特性(如果有);
  • 有效載荷,考慮自身傳感器和可能的危險;
  • 通信系統。

描述無人機飛行動力學的分析模型在數學上應該是合理的,因為任務能力在很大程度上取決于車輛配置和行為。

考慮到剛體在空間中的運動動力學需要一個固定在剛體本身的參考系來進行合適的力學描述,并做出一些假設(例如,剛體模型、靜止大氣和無擾動、對稱機身和作用力在重心處),可以為 sUAV 的飛行動力學開發牛頓-歐拉方程。

在檢測 sUAS 時,必須考慮幾個現象,例如可見波范圍內外的反射、射頻、聲學以及相關技術,如被動和主動成像和檢測。

由于需要多個傳感器檢測 sUAS,因此有必要考慮識別的參數以便針對不同類型的檢測器對特征進行建模。此外,對多個傳感器的依賴還需要在信息融合和集成學習方面取得進步,以確保從完整的態勢感知中獲得可操作的情報。

無人機可探測性專家會議表明了對雷達特征以及不同無人機、雷達和場景的聲學特征進行建模的可能性,以補充實驗數據并幫助開發跟蹤、分類和態勢感知算法。此外,雷達場景模擬的適用性及其在目標建模和特征提取中的潛在用途已得到證實。

然而,由于市場上無人機的復雜性和可變性以及它們的不斷增強,就其物理和動態特性對無人機簽名進行清晰的建模似乎并不容易。

sUAS 特性的復雜性和可變性使得很難完成定義適合在仿真系統中使用的模型的任務。這是由于無人機本身的幾個參數,以及考慮到無人機的所有機動能力和特性所需的飛行動力學方程的復雜性。

此外,sUAS 特性的復雜性和可變性不允許定義用于評估相關特征的參數模型。

圖1 無人機類別與其他類別/參數的關系(part 1)

圖2 無人機類別與其他類別/參數的關系(part 2)

圖3 參考坐標系

【報告目錄】

付費5元查看完整內容
北京阿比特科技有限公司