亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

圖池化是眾多圖神經網絡(GNN)架構的核心組件。由于繼承了傳統的CNNs,大多數方法將圖池化為一個聚類分配問題,將規則網格中的局部patch的思想擴展到圖中。盡管廣泛遵循了這種設計選擇,但沒有任何工作嚴格評估過它對GNNs成功的影響。我們以代表性的GNN為基礎,并引入了一些變體,這些變體挑戰了在補充圖上使用隨機化或聚類的局部保持表示的需要。引人注目的是,我們的實驗表明,使用這些變體不會導致任何性能下降。為了理解這一現象,我們研究了卷積層和隨后的池層之間的相互作用。我們證明了卷積在學習的表示法中起著主導作用。與通常的看法相反,局部池化不是GNNs在相關和廣泛使用的基準測試中成功的原因。

付費5元查看完整內容

相關內容

圖神經網絡 (GNN) 是一種連接模型,它通過圖的節點之間的消息傳遞來捕捉圖的依賴關系。與標準神經網絡不同的是,圖神經網絡保留了一種狀態,可以表示來自其鄰域的具有任意深度的信息。近年來,圖神經網絡(GNN)在社交網絡、知識圖、推薦系統、問答系統甚至生命科學等各個領域得到了越來越廣泛的應用。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

圖神經網絡(GNNs)通常應用于靜態圖,這些靜態圖可以認為是預先已知的。這種靜態輸入結構通常完全由機器學習從業者的洞察力決定,對于GNN正在解決的實際任務可能不是最佳的。在缺乏可靠的領域專家知識的情況下,人們可能求助于推斷潛在的圖結構,但由于可能的圖的搜索空間很大,這往往是困難的。這里我們引入了點針圖網絡(PGNs),它增加了集合或圖的推斷邊的能力,以提高模型的表達能力。PGNs允許每個節點動態地指向另一個節點,然后通過這些點針傳遞消息。這種可適應圖結構的稀疏性使學習變得容易處理,同時仍然具有足夠的表現力來模擬復雜的算法。關鍵的是,指向機制可以直接監督的,以對經典數據結構上的長期操作序列建模,并結合了來自理論計算機科學的有用的結構歸納偏差。定性地說,我們證明了PGNs可以學習基于點針的數據結構的可并行變體,即不相交集并和鏈接/修剪樹。PGNs在動態圖連通性任務中將分布外概括為5個較大的測試輸入,優于不受限制的GNNs和深度集合。

付費5元查看完整內容

圖神經網絡在圖表示學習領域取得了顯著的成功。圖卷積執行鄰域聚合,并表示最重要的圖運算之一。然而,這些鄰域聚合方法的一層只考慮近鄰,當進一步啟用更大的接受域時,性能會下降。最近的一些研究將這種性能下降歸因于過度平滑問題,即重復傳播使得不同類的節點表示無法區分。在這項工作中,我們系統地研究這一觀察結果,并對更深的圖神經網絡發展新的見解。本文首先對這一問題進行了系統的分析,認為當前圖卷積運算中表示變換與傳播的糾纏是影響算法性能的關鍵因素。將這兩種操作解耦后,更深層次的圖神經網絡可用于從更大的接受域學習圖節點表示。在建立深度模型時,我們進一步對上述觀察結果進行了理論分析,這可以作為過度平滑問題的嚴格而溫和的描述。在理論和實證分析的基礎上,我們提出了深度自適應圖神經網絡(DAGNN),以自適應地吸收來自大接受域的信息。一組關于引文、合著和共購數據集的實驗證實了我們的分析和見解,并展示了我們提出的方法的優越性。

//arxiv.org/abs/2007.09296

付費5元查看完整內容

圖神經網絡(GNN)已經在許多具有挑戰性的應用中展示了優越的性能,包括小樣本學習任務。盡管GNN具有強大的從少量樣本中學習和歸納的能力,但隨著模型的深入,GNN通常會出現嚴重的過擬合和過平滑問題,這限制了模型的可擴展性。在這項工作中,我們提出了一個新的注意力GNN來解決這些挑戰,通過合并三重注意機制,即節點自我注意,鄰居注意和層記憶注意力。我們通過理論分析和實例說明了所提出的注意模塊可以改善小樣本學習的GNN的原因。廣泛的實驗表明,在mini-ImageNet 和Tiered-ImageNet數據集上,通過誘導和直推設置,提出的注意力GNN在小樣本學習方面優于基于最先進的GNN方法。

付費5元查看完整內容

圖卷積運算符將深度學習的優勢引入到各種以前認為無法實現的圖和網格處理任務中。隨著他們的不斷成功,人們希望設計更強大的架構,通常是通過將現有的深度學習技術應用于非歐幾里德數據。在這篇論文中,我們認為在新興的幾何深度學習領域,幾何應該保持創新的主要驅動力。我們將圖神經網絡與廣泛成功的計算機圖形學和數據近似模型:徑向基函數(RBFs)聯系起來。我們推測,與RBFs一樣,圖卷積層將受益于將簡單函數添加到強大的卷積內核中。我們引入了仿射跳躍連接,這是一種將全連通層與任意圖卷積算子相結合而形成的新型構造塊。通過實驗驗證了該方法的有效性,表明改進的性能不僅僅是參數數目增加的結果。在我們評估的每一項任務中,配備了仿射跳躍連接的操作人員都顯著地優于他們的基本性能。形狀重建,密集形狀對應,和圖形分類。我們希望我們的簡單而有效的方法將作為一個堅實的基線,并有助于緩解未來在圖神經網絡的研究。

付費5元查看完整內容

圖卷積神經網絡(GCNNs)是深度學習技術在圖結構數據問題上的一種強大的擴展。我們對GCNNs的幾種池方法進行了實證評估,并將這些圖池化方法與三種不同架構(GCN、TAGCN和GraphSAGE)進行了組合。我們證實,圖池化,特別是DiffPool,提高了流行的圖分類數據集的分類精度,并發現,平均而言,TAGCN達到了可比或更好的精度比GCN和GraphSAGE,特別是對數據集較大和稀疏的圖結構。

付費5元查看完整內容
北京阿比特科技有限公司