亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

在醫療、交通、教育、大學入學、招生、貸款等領域,人工智能(ai)和機器學習(ML)算法控制人類日常生活的決策正在增加。由于它們現在涉及到我們生活的許多方面,開發不僅準確而且客觀和公平的ML算法是至關重要的。最近的研究表明,算法決策可能天生就傾向于不公平,即使沒有這樣的意圖。本文概述了在分類任務上使用ML算法時識別、度量和改進算法公平性的主要概念。本文首先討論了算法偏見和不公平產生的原因,以及公平的常見定義和衡量標準。公平促進機制然后審查和分為前過程,在過程中,和后過程機制。然后對這些機制進行全面的比較,以便更好地理解在不同的場景中應該使用哪些機制。文章最后回顧了算法公平性的幾個新興研究子領域,不僅僅是分類。

//dl.acm.org/doi/10.1145/3494672

引言**

如今,越來越多的決策由人工智能(AI)和機器學習(ML)算法控制,自動化決策系統在商業和政府應用中的應用越來越多。自動化學習模型的動機很明確——我們希望算法比人類表現得更好,原因有幾個。**首先,算法可能會整合比人類所能掌握的更多的數據,并考慮更多的因素。第二,算法可以比人類更快地完成復雜的計算。第三,人類的決定是主觀的,通常包含偏見。

因此,人們普遍認為,使用自動算法會使決策更客觀或更公平。然而,不幸的是,情況并非如此,因為ML算法并不總是像我們期望的那樣客觀。ML算法無偏差的想法是錯誤的,因為注入模型的數據是無偏差的假設是錯誤的。更具體地說,一個預測模型實際上可能具有固有的偏見,因為它學習并保留了歷史偏見[125]。

由于許多自動化決策(包括個人將獲得工作、貸款、藥物、保釋或假釋)會對人們的生活產生重大影響,因此評估和改善這些自動化系統做出的決策的道德規范非常重要。事實上,近年來,對算法公平性的關注已經成為頭條新聞。最常見的例子之一是在刑事司法領域,最近的披露表明,美國刑事司法系統使用的算法錯誤地預測了非裔美國人未來的犯罪率,其預測率是白人的兩倍[6,47]。在另一個招聘應用的案例中,亞馬遜最近發現他們的ML招聘系統歧視女性求職者,尤其是在軟件開發和技術崗位上。一個值得懷疑的原因是,大多數記錄在案的歷史數據都是男性軟件開發人員[54]。在廣告業的另一個不同場景中,谷歌的廣告定位算法提出男性比女性獲得更高薪水的高管職位[56,187]。

這些證據和對算法公平性的關注使得人們對定義、評估和提高ML算法公平性的文獻越來越感興趣(例如,見[20,48,79,97])。然而,值得注意的是,提高ML算法的公平性的任務并不簡單,因為在準確性和公平性之間存在固有的權衡。換句話說,當我們追求更高程度的公平時,我們可能會犧牲準確性(例如,見[125])。本文綜述了ML中的公平問題。與該領域最近的其他綜述相比[48,79,147],我們的工作提出了一個全面和最新的領域概述,從公平的定義和措施到最先進的公平增強機制。我們的綜述還試圖涵蓋各種措施和機制的利弊,并指導它們應在何種環境下使用。最后,盡管本文的主要部分主要處理分類任務,但本綜述的主要目標是突出和討論分類之外的新興研究領域,這些研究領域預計將在未來幾年得到發展。總的來說,這項綜述提供了相關的知識,使新的研究人員進入該領域,告知當前的研究人員快速發展的子領域,并為實踐者應用結果提供必要的工具。

本文其余部分的結構如下。第二節討論了算法不公平的潛在原因。第三節介紹了公平的定義和衡量標準以及它們的權衡。第四節回顧了公平機制和方法,并對各種機制進行了比較,重點討論了每種機制的優缺點。第五節介紹了在ML中超越分類的公平性的幾個新興的研究子領域。第六節提供了結束語和概述幾個開放的挑戰,為未來的研究。

不公平性引起的潛在因素

  • 偏差已經包含在用于學習的數據集中,這些數據基于有偏差的設備測量、歷史上有偏差的人類決策、錯誤的報告或其他原因。ML算法本質上就是為了復制這些偏差而設計的。

  • 缺失數據引起的偏差,如缺失值或樣本/選擇偏差,導致數據集不能代表目標人群。

  • 來自算法目標的偏差,其目的是最小化總體總體的預測誤差,因此有利于多數群體而不是少數群體。

  • 敏感屬性的“代理”屬性導致的偏差。敏感屬性區分特權群體和非特權群體,例如種族、性別和年齡,通常不適合在決策中使用。代理屬性是可以用來派生敏感屬性的非敏感屬性。當數據集包含代理屬性時,ML算法可以在使用假定合法屬性[15]的掩護下,基于敏感屬性進行隱式決策。

公平性定義與度量**

算法公平的度量和定義****

算法公平性研究方向

公平序列學習 現有的算法公平性研究大多考慮批量分類,其中完整的數據可以提前獲得。然而,許多學習設置具有動態性質,數據是隨時間收集的。與批量學習不同,在這些設置中,系統包括反饋循環,因此每一步的決策都可能影響未來的狀態和決策。這也適用于公平決策,因為它們現在應該在每個步驟中考慮,其中短期的公平決策可能會影響長期的公平結果,這一設置通常被稱為順序學習。在這種情況下,有必要平衡利用現有知識(例如,雇傭一個已知的人群)和探索次優解決方案來收集更多的數據(例如,雇傭不同背景的人群,與當前員工不同)。

公平對抗學習 今天,公平對抗學習在公平分類和公平表征的生成方面越來越受到關注。在一起令人痛心的事件中,一款面部修改應用被曝光為種族主義應用,因為該應用的“圖像濾鏡”旨在將面部圖像變得更“有吸引力”,卻讓皮膚變得更白[167]。

公平詞嵌入 單詞嵌入模型構建單詞的表示,并將它們映射到向量(通常也稱為word2vec模型)。單詞嵌入的訓練是使用帶有大量文本文檔的原始文本數據進行的,并且是基于出現在相同上下文中的單詞往往具有相似含義的假設。這些模型的設計主要是為了使嵌入的向量能夠指示單詞之間的含義和關系(即,含義相似的單詞在向量空間中具有接近的向量)。因此,它們被廣泛應用于許多自然語言處理應用程序,如搜索引擎、機器翻譯、簡歷過濾、工作推薦系統、在線評論等。

公平視覺描述 由于CV模型在多個任務中產生了的偏倚結果,CV公平性的研究最近得到了廣泛的關注。例如,Buolamwini和Gebru[33]發現,由于數據集中女性深膚色面孔的代表性不足,面部分析模型對判別結果產生了負面影響。Kay等人[117]發現,谷歌引擎中對職業的圖像搜索會導致性別偏見的結果。谷歌的標簽申請魯莽地將美國黑人認定為“大猩猩”[160,188]。此外,一款根據照片對個人吸引力進行分類的應用被證明對黑皮膚有歧視[144]。

公平推薦系統 推薦系統在許多自動化和在線系統中都很普遍,其設計目的是分析用戶的數據,為他們提供符合每個用戶口味和興趣的個性化建議。推薦的一個固有概念是,對一個用戶來說最好的項目可能與對另一個用戶來說不同。推薦項目的例子有電影、新聞文章、產品、工作和貸款等。這些系統具有促進提供者和消費者活動的潛力;然而,他們也被發現表現出公平性問題[34,35,67,68]。例如,谷歌的廣告定位算法表明,男性比女性更容易獲得高薪的高管職位[56,187]。

公平因果學習 從真實世界系統中收集的觀測數據大多可以提供關聯和相關性,而不是因果結構理解。相反,因果學習依賴于作為因果模型構建的額外知識。僅基于可觀測數據的測量方法的一個局限性是,它們沒有考慮數據產生的機制,因此可能會產生錯誤的解釋[143]。此外,如第3節所述,公平概念存在著不兼容性的挑戰。觀測方法的另一個局限性是,如4.4節所述,它們可能會受到缺失數據的嚴重影響。

公平隱私學習 Dwork等人[60]對隱私與公平的關系進行了討論。我們注意到算法公平性研究與隱私研究密切相關,因為通過混淆敏感信息可以增強公平性和隱私,而對手的目標是最小化數據失真[65,118]。此外,侵犯隱私(例如,推理隱私[53,64,82])可能導致不公平,因為對手有能力推斷個人的敏感信息,并以一種有區別的方式使用這些信息。

參考文獻

  1. Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar Jannach, Toshihiro Kamishima, Jan Krasnodebski, and Luiz Pizzato. 2019. Beyond personalization: Research directions in multistakeholder recommendation. arXiv preprint arXiv:1905.01986 (2019).
  2. Himan Abdollahpouri, Gediminas Adomavicius, Robin Burke, Ido Guy, Dietmar Jannach, Toshihiro Kamishima, Jan Krasnodebski, and Luiz Pizzato. 2020. Multistakeholder recommendation: Survey and research directions. User Modeling and User-Adapted Interaction 30 (2020), 127–158.
  3. Adel Abusitta, Esma A?meur, and Omar Abdel Wahab. 2019. Generative adversarial networks for mitigating biases in machine learning systems. arXiv preprint arXiv:1905.09972 (2019).
  4. Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. 2018. A reductions approach to fair classification. In Proceedings of the International Conference on Machine Learning. 60–69.
付費5元查看完整內容

相關內容

摘要

在過去的幾十年里,人工智能技術迅猛發展,改變了每個人的日常生活,深刻改變了人類社會的進程。開發人工智能的目的是通過減少勞動、增加生活便利、促進社會公益來造福人類。然而,最近的研究和人工智能應用表明,人工智能可能會對人類造成意外傷害,例如,在安全關鍵的情況下做出不可靠的決定,或通過無意中歧視一個或多個群體而破壞公平。因此,值得信賴的人工智能最近受到越來越多的關注,人們需要避免人工智能可能給人們帶來的負面影響,以便人們能夠充分信任人工智能技術,與人工智能技術和諧相處。近年來,人們對可信人工智能進行了大量的研究。在本次綜述中,我們從計算的角度對值得信賴的人工智能進行了全面的評述,幫助讀者了解實現值得信賴的人工智能的最新技術。值得信賴的人工智能是一個大而復雜的課題,涉及方方面面。在這項工作中,我們關注實現值得信賴的人工智能的六個最關鍵方面: (i) 安全性和健壯性,(ii) 非歧視和公平,(iii) 可解釋性,(iv) 隱私,(v) 問責性和可審計性,和(vi) 環境福祉。對于每個維度,我們根據一個分類回顧了最近的相關技術,并總結了它們在真實系統中的應用。我們還討論了不同維度之間的協調和沖突互動,并討論了值得信賴的人工智能在未來研究的潛在方面。

引言

人工智能(AI)是一門研究和發展模擬、擴展和拓展人類智能的理論、方法、技術和應用系統的科學,為現代人類社會帶來了革命性的影響。從微觀角度來看,人工智能在我們生活的許多方面發揮著不可替代的作用。現代生活充滿了與人工智能應用的互動: 從用人臉識別解鎖手機,與語音助手交談,到購買電子商務平臺推薦的產品; 從宏觀角度看,人工智能創造了巨大的經濟成果。世界經濟論壇的《2020年就業前景報告》[136]預測,人工智能將在5年內創造5800萬個新就業崗位。到2030年,人工智能預計將產生13萬億美元的額外經濟利潤,對全球GDP的年增長率貢獻1.2%[54]。然而,隨著其快速而令人印象深刻的發展,人工智能系統也暴露了其不值得信任的一面。例如,安全至關重要的人工智能系統在對抗攻擊時很脆弱。無人駕駛汽車的深度圖像識別系統可能無法識別被惡意攻擊者修改的路標[345],對乘客安全構成極大威脅。此外,人工智能算法可能會導致偏見和不公平。在線人工智能聊天機器人可能會產生不雅、種族主義和性別歧視的內容[335],冒犯用戶,并產生負面社會影響。此外,人工智能系統還存在泄露用戶隱私和商業秘密的風險。黑客可以利用人工智能模型產生的特征向量來重構私人輸入數據,如指紋[25],從而泄露用戶的敏感信息。這些漏洞會使現有的人工智能系統無法使用,并可能造成嚴重的經濟和安全后果。對于人工智能來說,要想在一個領域取得進步、得到更廣泛的應用并創造更多的經濟價值,對誠信的擔憂已經成為一個巨大的障礙。因此,如何構建可信的人工智能系統成為學術界和業界關注的焦點。

近年來,出現了大量關于可信人工智能的文獻。隨著構建可信人工智能的需求日益增長,總結已有成果并探討未來可能的研究方向勢在必行。在本次綜述中,我們提供了值得信賴的人工智能的全面概述,以幫助新手對什么使人工智能系統值得信賴有一個基本的了解,并幫助老兵跟蹤該領域的最新進展。我們澄清了可信人工智能的定義,并介紹了可信人工智能的六個關鍵維度。對于每個維度,我們給出了它的概念和分類,并回顧了有代表性的算法。我們還介紹了不同維度之間可能的互動,并討論了值得信賴的人工智能尚未引起足夠關注的其他潛在問題。除了定義和概念,我們的綜述還關注實現可信人工智能每個維度的具體計算解決方案。這一視角有別于現有的一些相關工作,如政府指南[307],建議如何以法律法規的形式建立一個值得信賴的人工智能系統,或綜述[51,318],從高層次、非技術的角度討論值得信賴的人工智能的實現。

根據歐盟(EU)最近提供的人工智能倫理指南[307],一個值得信賴的人工智能系統應符合四項倫理原則: 尊重人類自主、防止傷害、公平和可解釋性。基于這四個原則,人工智能研究人員、實踐者和政府提出了值得信賴的人工智能的各個具體維度[51,307,318]。在這項調查中,我們重點關注已經被廣泛研究的六個重要和相關的維度。如圖1所示,它們是安全性和穩健性、非歧視性和公平性、可解釋性、隱私性、可審計性和可問責性,以及環境福祉。

余下論文綜述組織如下。在第2節中,我們明確了值得信賴的AI的定義,并提供了值得信賴的AI的各種定義,幫助讀者理解來自計算機科學、社會學、法律、商業等不同學科的研究人員是如何定義值得信賴的AI系統的。然后,我們將值得信賴的人工智能與倫理人工智能和負責任的人工智能等幾個相關概念區分開來。在第3節中,我們詳細介紹了安全性和穩健性的維度,這要求人工智能系統對輸入的噪聲擾動具有穩健性,并能夠做出安全的決策。近年來,大量研究表明,人工智能系統,尤其是那些采用深度學習模型的系統,可能對有意或無意的輸入擾動非常敏感,對安全至關重要的應用構成巨大風險。例如,如前所述,自動駕駛汽車可能會被改變的路標欺騙。此外,垃圾郵件檢測模型可能會被設計良好的文本[30]郵件欺騙。因此,垃圾郵件發送者可以利用這個弱點,使他們的電子郵件不受檢測系統的影響,這將導致糟糕的用戶體驗。已經證明,人工智能算法可以通過提供的訓練例子學習人類的歧視,并做出不公平的決定。例如,一些人臉識別算法難以識別非洲裔美國人的面孔[280]或將其誤分類為大猩猩[168]。此外,語音聽寫軟件在識別男性聲音時通常比識別女性聲音表現得更好[277]。

在第4節中,我們介紹了非歧視和公平的維度,在這個維度中,人工智能系統被期望避免對某些群體或個人的不公平偏見。在第5節中,我們討論了可解釋性的維度,這表明AI的決策機制系統應該能夠向利益相關者解釋(他們應該能夠理解解釋)。例如,人工智能技術已經被用于根據患者的癥狀和身體特征進行疾病診斷[289]。在這種情況下,黑箱決策是不可接受的。推理過程應該對醫生和患者透明,以確保診斷的每個細節都是準確的。

研究人員發現,一些人工智能算法可以存儲和暴露用戶的個人信息。例如,在人類會話語料庫上訓練的對話模型可以記住敏感信息,如信用卡號碼,這些信息可以通過與模型交互而得到[164]。在第6節中,我們提出了隱私的維度,這需要一個人工智能系統來避免泄露任何私人信息。在第7節中,我們描述了可審計性和問責性的維度,該維度期望人工智能系統由第三方評估,并在必要時為人工智能故障分配責任,特別是在關鍵應用中[307]。最近,人工智能系統對環境的影響引起了人們的關注,因為一些大型人工智能系統消耗了大量的能源。作為一項主流的人工智能技術,深度學習正在朝著追求更大的模型和更多的參數的方向發展。因此,會消耗更多的存儲和計算資源。一項研究[312]表明,訓練BERT模型[110]需要排放大約1400磅二氧化碳,這與跨美國的往返飛行相當。因此,人工智能系統應該是可持續的和環境友好的。

在第8節中,我們回顧了環境福利的維度。在第9節中,我們將討論不同維度之間的相互作用。最近的研究表明,值得信賴的AI的不同維度之間存在一致性和沖突[307,333]。例如,深度神經網絡的魯棒性和可解釋性緊密相連,魯棒模型往往更具有可解釋性[122,322],反之亦然[255]。此外,研究表明,在某些情況下,健壯性和隱私之間存在權衡。例如,對抗性防御方法會使模型更容易受到成員推理攻擊,增加了訓練數據泄漏的風險[308]。

除了上述六個維度,值得信賴的人工智能還有更多的維度,如人工代理和監督、可信性等。盡管這些額外的維度與本文中考慮的6個維度一樣重要,但它們還處于開發的早期階段,相關文獻非常有限,特別是對于計算方法而言。因此,在第10節中,我們將討論值得信賴的人工智能的這些方面,作為未來需要專門研究的方向。

付費5元查看完整內容

聯邦學習旨在在不犧牲本地數據隱私的情況下,從多個分散的邊緣設備(例如移動設備)或服務器中學習機器學習模型。最近的自然語言處理技術依賴于深度學習和大型預訓練語言模型。然而,大型深度神經模型和語言模型都是用大量數據訓練的,這些數據通常位于服務器端。由于文本數據廣泛來自最終用戶,在這項工作中,我們研究了最近使用聯邦學習作為學習框架的 NLP 模型和技術。我們的綜述討論了聯邦自然語言處理的主要挑戰,包括算法挑戰、系統挑戰以及隱私問題。我們還對現有的聯邦 NLP 評估方法和工具進行了嚴格審查。最后,我們強調了當前的研究差距和未來的方向。

//www.zhuanzhi.ai/paper/a7798d2845ab5942e6e095b0be202d08

付費5元查看完整內容

機器學習在許多部署的決策系統中發揮著作用,其方式通常是人類利益相關者難以理解或不可能理解的。以一種人類可以理解的方式解釋機器學習模型的輸入和輸出之間的關系,對于開發可信的基于機器學習的系統是至關重要的。一個新興的研究機構試圖定義機器學習的目標和解釋方法。在本文中,我們試圖對反事實解釋的研究進行回顧和分類,這是一種特殊類型的解釋,它提供了在模型輸入以特定方式改變時可能發生的事情之間的聯系。機器學習中反事實可解釋性的現代方法與許多國家的既定法律原則相聯系,這使它們吸引了金融和醫療等高影響力領域的實地系統。因此,我們設計了一個具有反事實解釋算法理想性質的準則,并對目前提出的所有反事實解釋算法進行了綜合評價。我們的標題便于比較和理解不同方法的優缺點,并介紹了該領域的主要研究主題。我們也指出了在反事實解釋空間的差距和討論了有前途的研究方向。

機器學習作為一種在許多領域實現大規模自動化的有效工具,正日益被人們所接受。算法能夠從數據中學習,以發現模式并支持決策,而不是手工設計的規則。這些決定可以并確實直接或間接地影響人類;備受關注的案例包括信貸貸款[99]、人才資源[97]、假釋[102]和醫療[46]的申請。在機器學習社區中,新生的公平、責任、透明度和倫理(命運)已經成為一個多學科的研究人員和行業從業人員的團體,他們感興趣的是開發技術來檢測機器學習模型中的偏見,開發算法來抵消這種偏見,為機器決策生成人類可理解的解釋,讓組織為不公平的決策負責,等等。

對于機器決策,人類可以理解的解釋在幾個方面都有優勢。例如,關注一個申請貸款的申請人的用例,好處包括:

  • 對于生活受到該決定影響的申請人來說,解釋是有益的。例如,它幫助申請人理解他們的哪些因素是做出決定的關鍵因素。

  • 此外,如果申請人覺得受到了不公平待遇,例如,如果一個人的種族在決定結果時至關重要,它還可以幫助申請人對決定提出質疑。這對于組織檢查其算法中的偏見也很有用。

  • 在某些情況下,解釋為申請人提供了反饋,他們可以根據這些反饋采取行動,在未來的時間內獲得預期的結果。

  • 解釋可以幫助機器學習模型開發人員識別、檢測和修復錯誤和其他性能問題。

  • 解釋有助于遵守與機器生產決策相關的法律,如GDPR[10]。

機器學習中的可解釋性大體上是指使用固有的可解釋的透明模型或為不透明模型生成事后解釋。前者的例子包括線性/邏輯回歸、決策樹、規則集等。后者的例子包括隨機森林、支持向量機(SVMs)和神經網絡。

事后解釋方法既可以是模型特定的,也可以是模型不可知的。特征重要性解釋和模型簡化是兩種廣泛的特定于模型的方法。與模型無關的方法可以分為視覺解釋、局部解釋、特性重要性和模型簡化。

特征重要性(Feature importance)是指對模型的整體精度或某個特定決策最有影響的特征,例如SHAP[80]、QII[27]。模型簡化找到了一個可解釋的模型,該模型緊致地模仿了不透明模型。依存圖是一種常用的直觀解釋,如部分依存圖[51]、累積局部效應圖[14]、個體條件期望圖[53]。他們將模型預測的變化繪制成一個特征,或者多個特征被改變。局部解釋不同于其他解釋方法,因為它們只解釋一個預測。局部解釋可以進一步分為近似解釋和基于實例的解釋。近似方法在模型預測需要解釋的數據點附近抽取新的數據點(以下稱為explainee數據點),然后擬合線性模型(如LIME[92])或從中提取規則集(如錨[93])。基于實例的方法尋求在被解釋數據點附近找到數據點。它們要么以與被解釋數據點具有相同預測的數據點的形式提供解釋,要么以預測與被解釋數據點不同的數據點的形式提供解釋。請注意,后一種數據點仍然接近于被解釋的數據點,被稱為“反事實解釋”。

回想一下申請貸款的申請人的用例。對于貸款請求被拒絕的個人,反事實的解釋為他們提供反饋,幫助他們改變自己的特征,以過渡到決策邊界的理想一面,即獲得貸款。這樣的反饋被稱為可執行的。與其他幾種解釋技術不同,反事實解釋不能明確回答決策中的“為什么”部分;相反,他們提供建議以達到預期的結果。反事實解釋也適用于黑箱模型(只有模型的預測功能是可訪問的),因此不限制模型的復雜性,也不要求模型披露。它們也不一定能近似底層模型,從而產生準確的反饋。由于反事實解釋具有直覺性,因此也符合法律框架的規定(見附錄C)。

在這項工作中,我們收集、審查和分類了最近的39篇論文,提出了算法,以產生機器學習模型的反事實解釋。這些方法大多集中在表格或基于圖像的數據集上。我們在附錄b中描述了我們為這項調查收集論文的方法。我們描述了這個領域最近的研究主題,并將收集的論文按照有效的反事實解釋的固定需求進行分類(見表1)。

付費5元查看完整內容

通過人工神經網絡等獲得的預測具有很高的準確性,但人類經常將這些模型視為黑盒子。對于人類來說,關于決策制定的洞察大多是不透明的。在醫療保健或金融等高度敏感領域,對決策的理解至關重要。黑盒子背后的決策要求它對人類來說更加透明、可問責和可理解。這篇綜述論文提供了基本的定義,概述了可解釋監督機器學習(SML)的不同原理和方法。我們進行了最先進的綜述,回顧過去和最近可解釋的SML方法,并根據介紹的定義對它們進行分類。最后,我們通過一個解釋性的案例研究來說明原則,并討論未來的重要方向。

//www.zhuanzhi.ai/paper/d34a1111c1ab9ea312570ae8e011903c

目前人工智能(AI)模型的準確性是顯著的,但準確性并不是最重要的唯一方面。對于高風險的領域,對模型和輸出的詳細理解也很重要。底層的機器學習和深度學習算法構建的復雜模型對人類來說是不透明的。Holzinger等人(2019b)指出,醫學領域是人工智能面臨的最大挑戰之一。對于像醫療這樣的領域,深刻理解人工智能的應用是至關重要的,對可解釋人工智能(XAI)的需求是顯而易見的。

可解釋性在許多領域很重要,但不是在所有領域。我們已經提到了可解釋性很重要的領域,例如衛生保健。在其他領域,比如飛機碰撞避免,算法多年來一直在沒有人工交互的情況下運行,也沒有給出解釋。當存在某種程度的不完整時,需要可解釋性。可以肯定的是,不完整性不能與不確定性混淆。不確定性指的是可以通過數學模型形式化和處理的東西。另一方面,不完全性意味著關于問題的某些東西不能充分編碼到模型中(Doshi-Velez和Kim(2017))。例如,刑事風險評估工具應該是公正的,它也應該符合人類的公平和道德觀念。但倫理學是一個很寬泛的領域,它是主觀的,很難正式化。相比之下,飛機避免碰撞是一個很容易理解的問題,也可以被精確地描述。如果一個系統能夠很好地避免碰撞,就不用再擔心它了。不需要解釋。

本文詳細介紹了可解釋SML的定義,并為該領域中各種方法的分類奠定了基礎。我們區分了各種問題定義,將可解釋監督學習領域分為可解釋模型、代理模型擬合和解釋生成。可解釋模型的定義關注于自然實現的或通過使用設計原則強制實現的整個模型理解。代理模型擬合方法近似基于黑盒的局部或全局可解釋模型。解釋生成過程直接產生一種解釋,區分局部解釋和全局解釋。

綜上所述,本文的貢獻如下:

  • 對五種不同的解釋方法進行形式化,并對整個解釋鏈的相應文獻(分類和回歸)進行回顧。
  • 可解釋性的原因,審查重要領域和可解釋性的評估
  • 這一章僅僅強調了圍繞數據和可解釋性主題的各個方面,比如數據質量和本體
  • 支持理解不同解釋方法的連續用例
  • 回顧重要的未來方向和討論

付費5元查看完整內容

題目

A Survey on Large-scale Machine :大規模機器學習綜述

關鍵詞

機器學習,綜述調查

摘要

機器學習可以提供對數據的深刻見解,從而使機器能夠做出高質量的預測,并已廣泛用于諸如文本挖掘,視覺分類和推薦系統之類的實際應用中。 但是,大多數復雜的機器學習方法在處理大規模數據時會耗費大量時間。 這個問題需要大規模機器學習(LML),其目的是從具有可比性能的大數據中學習模式。 在本文中,我們對現有的LML方法進行了系統的調查,為該領域的未來發展提供了藍圖。 我們首先根據提高可伸縮性的方式來劃分這些LML方法:1)簡化計算復雜度的模型,2)優化計算效率的近似值,以及3)提高計算的并行性。 然后,根據目標場景對每種方法進行分類,并根據內在策略介紹代表性方法。最后,我們分析其局限性并討論潛在的方向以及未來有望解決的開放問題。

簡介

機器學習使機器能夠從數據中學習模式,從而無需手動發現和編碼模式。 盡管如此,相對于訓練實例或模型參數的數量,許多有效的機器學習方法都面臨二次時間復雜性[70]。 近年來,隨著數據規模的迅速增長[207],這些機器學習方法變得不堪重負,難以為現實應用服務。 為了開發大數據的金礦,因此提出了大規模機器學習(LML)。 它旨在解決可用計算資源上的常規機器學習任務,特別著重于處理大規模數據。 LML可以以幾乎線性(甚至更低)的時間復雜度處理任務,同時獲得可比的精度。 因此,它已成為可操作的見解的大數據分析的核心。 例如,Waymo和Tesla Autopilot等自動駕駛汽車在計算機視覺中應用了卷積網絡,以實時圖像感知周圍環境[115]; 諸如Netflix和Amazon之類的在線媒體和電子商務站點從用戶歷史到產品推薦都建立了有效的協作過濾模型[18]。總而言之,LML在我們的日常生活中一直扮演著至關重要的和不可或缺的角色。

鑒于對從大數據中學習的需求不斷增長,對此領域的系統調查變得非常科學和實用。 盡管在大數據分析領域已經發表了一些調查報告[12],[33],[54],[193],但它們在以下方面還不夠全面。 首先,它們大多數只專注于LML的一個觀點,而忽略了互補性。它限制了它們在該領域的價值,并無法促進未來的發展。例如,[12]專注于預測模型而沒有發現優化問題,[33]在忽略并行化的同時回顧了隨機優化算法,[193]僅關注了 大數據處理系統,并討論系統支持的機器學習方法。 其次,大多數調查要么失去對所審查方法的洞察力,要么忽視了最新的高質量文獻。 例如,[12]缺乏討論模型的計算復雜性的討論,[33]忽略了處理高維數據的優化算法,[120]將其研究限于Hadoop生態系統中的分布式數據分析。 從計算角度回顧了200多篇Paperson LML,并進行了更深入的分析,并討論了未來的研究方向。 我們為從業者提供查找表,以根據他們的需求和資源選擇預測模型,優化算法和處理系統。 此外,我們為研究人員提供了有關當前策略的見解,以更有效地開發下一代LML的指南。

我們將貢獻總結如下。 首先,我們根據三個計算角度對LML進行了全面概述。 具體來說,它包括:1)模型簡化,通過簡化預測模型來降低計算復雜性; 2)優化近似,通過設計更好的優化算法來提高計算效率; 3)計算并行性,通過調度多個計算設備來提高計算能力。其次,我們對現有的LML方法進行了深入的分析。 為此,我們根據目標場景將每個角度的方法劃分為更精細的類別。 我們分析了它們促進機器學習過程的動機和內在策略。 然后,我們介紹了具有代表性的成就的特征。此外,我們還回顧了混合方法,這些方法共同改善了協同效應的多個視角。 第三,我們從各個角度分析了LML方法的局限性,并根據其擴展提出了潛在的發展方向。 此外,我們討論了有關LML未來發展的一些相關問題。

本文的結構如下。 我們首先在第2節中介紹了機器學習的一般框架,然后對其有效性和效率進行了高層次的討論。在第3節中,我們全面回顧了最新的LML方法并深入了解了它們的好處和優勢。 局限性。 最后,在第5節結束本文之前,我們討論了解決第4節中的局限性和其他有希望的未解決問題的未來方向。

付費5元查看完整內容

深度神經網絡(DNN)是實現人類在許多學習任務上的水平的不可缺少的機器學習工具。然而,由于其黑箱特性,很難理解輸入數據的哪些方面驅動了網絡的決策。在現實世界中,人類需要根據輸出的dna做出可操作的決定。這種決策支持系統可以在關鍵領域找到,如立法、執法等。重要的是,做出高層決策的人員能夠確保DNN決策是由數據特征的組合驅動的,這些數據特征在決策支持系統的部署上下文中是適當的,并且所做的決策在法律上或倫理上是可辯護的。由于DNN技術發展的驚人速度,解釋DNN決策過程的新方法和研究已經發展成為一個活躍的研究領域。在定義什么是能夠解釋深度學習系統的行為和評估系統的“解釋能力”時所存在的普遍困惑,進一步加劇了這種復雜性。為了緩解這一問題,本文提供了一個“領域指南”,為那些在該領域沒有經驗的人提供深度學習解釋能力指南: i)討論了研究人員在可解釋性研究中增強的深度學習系統的特征,ii)將可解釋性放在其他相關的深度學習研究領域的背景下,iii)介紹了定義基礎方法空間的三個簡單維度。

付費5元查看完整內容

題目

基于學習的序列決策算法的公平性綜述論文,Fairness in Learning-Based Sequential Decision Algorithms: A Survey

關鍵字

序列決策,機器學習,預測,公平性

簡介

決策過程中的算法公平性已經被廣泛研究,在不穩定的環境下,對分類等任務進行一次性決策。然而,在實踐中,大多數決策過程都是順序的,過去的決策可能會對未來的數據產生影響。特別是當決策影響到生成用于未來決策的數據的個人或用戶時。在這項調查中,我們回顧了現有文獻的數據驅動順序決策的公平性。我們將關注兩類順序決策:(1)過去的決策對潛在用戶群沒有影響,對未來數據也沒有影響;(2)過去的決策對潛在用戶群有影響,因此對未來數據也有影響,進而影響未來的決策。在每種情況下,都要研究各種公平干預措施對底層人口的影響。

作者

Xueru Zhang and Mingyan Liu

付費5元查看完整內容
北京阿比特科技有限公司