隨著以自然為靈感的純粹注意力模型,即transformer的出現,以及它們在自然語言處理(NLP)方面的成功,它們對機器視覺(MV)任務的擴展是不可避免的,而且感覺非常強烈。隨后,視覺變換器(ViTs)的引入給現有的基于深度學習的機器視覺技術帶來了挑戰。然而,純粹的基于注意力的模型/架構,如變換器,需要大量的數據、大量的訓練時間和大量的計算資源。最近的一些工作表明,這兩個不同領域的組合可以證明構建具有這兩個領域的優點的系統。據此,這一現狀的綜述論文是介紹,希望將幫助讀者得到有用的信息,這一有趣的和潛在的研究領域。首先介紹了注意力機制,然后討論了流行的基于注意力的深度架構。隨后,我們討論了基于機器視覺的注意機制與深度學習交叉的主要類別。然后,討論了本文研究范圍內的主要算法、問題和發展趨勢。
在人類中,注意力是所有感知和認知操作的核心屬性。考慮到我們處理競爭性信息來源的能力有限,注意力機制選擇、調整和關注與行為最相關的信息。
幾十年來,哲學、心理學、神經科學和計算機科學都在研究注意力的概念和功能。在過去的六年中,這一特性在深度神經網絡中得到了廣泛的研究。目前,深度學習的研究進展主要體現在幾個應用領域的神經注意力模型上。
本研究對神經注意力模型的發展進行了全面的概述和分析。我們系統地回顧了該領域的數百個架構,識別并討論了那些注意力顯示出重大影響的架構。我們亦制訂了一套自動化方法體系,并將其公諸于眾,以促進這方面的研究工作。通過批判性地分析650部文獻,我們描述了注意力在卷積、循環網絡和生成模型中的主要用途,識別了使用和應用的共同子組。
此外,我們還描述了注意力在不同應用領域的影響及其對神經網絡可解釋性的影響。最后,我們列出了進一步研究的可能趨勢和機會,希望這篇綜述能夠對該領域的主要注意力模型提供一個簡明的概述,并指導研究者開發未來的方法,以推動進一步的改進。
現在注意力機制已廣泛地應用在深度學習的諸多領域。基于注意力機制的結構模型不僅能夠記錄信息間的位置關系,還能依據信息的權重去度量不同信息特征的重要性。通過對信息特征進行相關與不相關的抉擇建立動態權重參數,以加強關鍵信息弱化無用信息,從而提高深度學習算法效率同時也改進了傳統深度學習的一些缺陷。因此從圖像處理領域、自然語言處理、數據預測等不同應用方面介紹了一些與注意力機制結合的算法結構,并對近幾年大火的基于注意力機制的transformer和reformer算法進行了綜述。鑒于注意力機制的重要性,綜述了注意力機制的研究發展,分析了注意力機制目前的發展現狀并探討了該機制未來可行的研究方向。
視頻中的異常檢測是一個研究了十多年的問題。這一領域因其廣泛的適用性而引起了研究者的興趣。正因為如此,多年來出現了一系列廣泛的方法,這些方法從基于統計的方法到基于機器學習的方法。在這一領域已經進行了大量的綜述,但本文著重介紹了使用深度學習進行異常檢測領域的最新進展。深度學習已成功應用于人工智能的許多領域,如計算機視覺、自然語言處理等。然而,這項調查關注的是深度學習是如何改進的,并為視頻異常檢測領域提供了更多的見解。本文針對不同的深度學習方法提供了一個分類。此外,還討論了常用的數據集以及常用的評價指標。然后,對最近的研究方法進行了綜合討論,以提供未來研究的方向和可能的領域。
近年來, 隨著海量數據的涌現, 可以表示對象之間復雜關系的圖結構數據越來越受到重視并給已有的算法帶來了極大的挑戰. 圖神經網絡作為可以揭示深層拓撲信息的模型, 已開始廣泛應用于諸多領域,如通信、生命科學和經濟金融等. 本文對近幾年來提出的圖神經網絡模型和應用進行綜述, 主要分為以下幾類:基于空間方法的圖神經網絡模型、基于譜方法的圖神經網絡模型和基于生成方法的圖神經網絡模型等,并提出可供未來進一步研究的問題.
//engine.scichina.com/publisher/scp/journal/SSM/50/3/10.1360/N012019-00133?slug=fulltext
圖是對對象及其相互關系的一種簡潔抽象的直觀數學表達. 具有相互關系的數據—圖結構數據在眾多領域普遍存在, 并得到廣泛應用. 隨著大量數據的涌現, 傳統的圖算法在解決一些深層次的重要問題, 如節點分類和鏈路預測等方面有很大的局限性. 圖神經網絡模型考慮了輸入數據的規模、異質性和深層拓撲信息等, 在挖掘深層次有效拓撲信息、 提取數據的關鍵復雜特征和 實現對海量數據的快速處理等方面, 例如, 預測化學分子的特性 [1]、文本的關系提取 [2,3]、圖形圖像的結構推理 [4,5]、社交網絡的鏈路預測和節點聚類 [6]、缺失信息的網絡補全 [7]和藥物的相互作用預測 [8], 顯示了令人信服的可靠性能.
圖神經網絡的概念最早于 2005 年由 Gori 等 [9]提出, 他借鑒神經網絡領域的研究成果, 設計了一種用于處理圖結構數據的模型. 2009 年, Scarselli 等 [10]對此模型進行了詳細闡述. 此后, 陸續有關于圖神經網絡的新模型及應用研究被提出. 近年來, 隨著對圖結構數據研究興趣的不斷增加, 圖神經網絡研究論文數量呈現出快速上漲的趨勢, 圖神經網絡的研究方向和應用領域都得到了很大的拓展.
目前已有一些文獻對圖神經網絡進行了綜述. 文獻 [11]對圖結構數據和流形數據領域的深度學習方法進行了綜述, 側重于將所述各種方法置于一個稱為幾何深度學習的統一框架之內; 文獻[12]將圖神經網絡方法分為三類: 半監督學習、無監督學習和最新進展, 并根據發展歷史對各種方法進行介紹、分析和對比; 文獻[13]介紹了圖神經網絡原始模型、變體和一般框架, 并將圖神經網絡的應用劃分為結構場景、非結構場景和其他場景; 文獻[14]提出了一種新的圖神經網絡分類方法, 重點介紹了圖卷積網絡, 并總結了圖神經網絡方法在不同學習任務中的開源代碼和基準.
本文將對圖神經網絡模型的理論及應用進行綜述, 并討論未來的方向和挑戰性問題. 與其他綜述文獻的不同之處在于, 我們給出新的分類標準, 并且介紹圖神經網絡豐富的應用成果. 本文具體結構如下: 首先介紹三類主要的圖神經網絡模型, 分別是基于空間方法的圖神經網絡、基于譜方法的圖神經網絡和基于生成方法的圖神經網絡等; 然后介紹模型在節點分類、鏈路預測和圖生成等方面的應用; 最后提出未來的研究方向.
在海量大數據的幫助下,深度學習在許多領域都取得了顯著的成功。但是,數據標簽的質量是一個問題,因為在許多現實場景中缺乏高質量的標簽。由于帶噪標簽嚴重降低了深度神經網絡的泛化性能,從帶噪標簽中學習(魯棒訓練)已成為現代深度學習應用的一項重要任務。在這個綜述中,我們首先從監督學習的角度來描述標簽噪聲的學習問題。接下來,我們提供了對46種最先進的魯棒訓練方法的全面回顧,所有這些方法根據其方法上的差異被歸類為7組,然后系統地比較用于評價其優越性的6種屬性。然后,總結了常用的評價方法,包括公共噪聲數據集和評價指標。最后,我們提出了幾個有前景的研究方向,可以作為未來研究的指導。
自然語言處理(NLP)幫助智能機器更好地理解人類語言,實現基于語言的人機交流。計算能力的最新發展和大量語言數據的出現,增加了使用數據驅動方法自動進行語義分析的需求。由于深度學習方法在計算機視覺、自動語音識別,特別是NLP等領域的應用取得了顯著的進步,數據驅動策略的應用已經非常普遍。本調查對得益于深度學習的NLP的不同方面和應用進行了分類和討論。它涵蓋了核心的NLP任務和應用,并描述了深度學習方法和模型如何推進這些領域。我們進一步分析和比較不同的方法和最先進的模型。
【導讀】辭九迎零,我們迎來2020,到下一個十年。在2019年機器學習領域繼續快速發展,元學習、遷移學習、小樣本學習、深度學習理論等取得很多進展。在此,專知小編整理這一年這些研究熱點主題的綜述進展,共十篇,了解當下,方能向前。
1、A guide to deep learning in healthcare(醫療深度學習技術指南)
斯坦福&谷歌Jeff Dean最新Nature論文:醫療深度學習技術指南(29頁綜述)
Google 斯坦福 Nature Medicine
作者:Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun & Jeff Dean
摘要:我們介紹了醫療保健的深度學習技術,重點討論了計算機視覺、自然語言處理、強化學習和廣義方法的深度學習。我們將描述這些計算技術如何影響醫學的幾個關鍵領域,并探討如何構建端到端系統。我們對計算機視覺的討論主要集中在醫學成像上,我們描述了自然語言處理在電子健康記錄數據等領域的應用。同樣,在機器人輔助手術的背景下討論了強化學習,并綜述了基因組學的廣義深度學習方法。
網址:
//www.nature.com/articles/s41591-018-0316-z
2、Multimodal Machine Learning: A Survey and Taxonomy(多模態機器學習)
人工智能頂刊TPAMI2019最新《多模態機器學習綜述》
CMU TPAMI
作者:Tadas Baltru?aitis,Chaitanya Ahuja,Louis-Philippe Morency
摘要:我們對世界的體驗是多模態的 - 我們看到物體,聽到聲音,感覺質地,聞到異味和味道。情態是指某種事物發生或經歷的方式,并且當研究問題包括多種這樣的形式時,研究問題被描述為多模式。為了使人工智能在理解我們周圍的世界方面取得進展,它需要能夠將這種多模態信號一起解釋。多模態機器學習旨在構建可以處理和關聯來自多種模態的信息的模型。這是一個充滿活力的多學科領域,具有越來越重要的意義和非凡的潛力。本文不是關注特定的多模態應用,而是研究多模態機器學習本身的最新進展。我們超越了典型的早期和晚期融合分類,并確定了多模式機器學習所面臨的更廣泛的挑戰,即:表示,翻譯,對齊,融合和共同學習。這種新的分類法將使研究人員能夠更好地了解該領域的狀況,并確定未來研究的方向。
網址:
3、Few-shot Learning: A Survey(小樣本學習)
《小樣本學習(Few-shot learning)》最新41頁綜述論文,來自港科大和第四范式
香港科大 第四范式
作者:Yaqing Wang,Quanming Yao
摘要:“機器會思考嗎”和“機器能做人類做的事情嗎”是推動人工智能發展的任務。盡管最近的人工智能在許多數據密集型應用中取得了成功,但它仍然缺乏從有限的數據示例學習和對新任務的快速泛化的能力。為了解決這個問題,我們必須求助于機器學習,它支持人工智能的科學研究。特別地,在這種情況下,有一個機器學習問題稱為小樣本學習(Few-Shot Learning,FSL)。該方法利用先驗知識,可以快速地推廣到有限監督經驗的新任務中,通過推廣和類比,模擬人類從少數例子中獲取知識的能力。它被視為真正人工智能,是一種減少繁重的數據收集和計算成本高昂的培訓的方法,也是罕見案例學習有效方式。隨著FSL研究的廣泛開展,我們對其進行了全面的綜述。我們首先給出了FSL的正式定義。然后指出了FSL的核心問題,將問題從“如何解決FSL”轉變為“如何處理核心問題”。因此,從FSL誕生到最近發表的作品都被歸為一個統一的類別,并對不同類別的優缺點進行了深入的討論。最后,我們從問題設置、技術、應用和理論等方面展望了FSL未來可能的發展方向,希望為初學者和有經驗的研究者提供一些見解。
網址:
4、meta Learning: A Survey(元學習)
元學習(Meta-Learning) 綜述及五篇頂會論文推薦
作者:Joaquin Vanschoren
摘要:元學習,或學習學習,是一門系統地觀察不同機器學習方法如何在廣泛的學習任務中執行的科學,然后從這種經驗或元數據中學習,以比其他方法更快的速度學習新任務。這不僅極大地加快和改進了機器學習管道或神經體系結構的設計,還允許我們用以數據驅動方式學習的新方法取代手工設計的算法。在本文中,我們將概述這一迷人且不斷發展的領域的最新進展。
網址:
5、A Comprehensive Survey on Transfer Learning(遷移學習)
中科院發布最新遷移學習綜述論文,帶你全面了解40種遷移學習方法
作者:Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Senior Member, IEEE, Hui Xiong, Senior Member, IEEE, and Qing He
摘要:遷移學習的目的是通過遷移包含在不同但相關的源域中的知識來提高目標學習者在目標域上的學習表現。這樣,可以減少對大量目標域數據的依賴,以構建目標學習者。由于其廣泛的應用前景,遷移學習已經成為機器學習中一個熱門和有前途的領域。雖然已經有一些關于遷移學習的有價值的和令人印象深刻的綜述,但這些綜述介紹的方法相對孤立,缺乏遷移學習的最新進展。隨著遷移學習領域的迅速擴大,對相關研究進行全面的回顧既有必要也有挑戰。本文試圖將已有的遷移學習研究進行梳理使其系統化,并對遷移學習的機制和策略進行全面的歸納和解讀,幫助讀者更好地了解當前的研究現狀和思路。與以往的文章不同,本文從數據和模型的角度對40多種具有代表性的遷移學習方法進行了綜述。還簡要介紹了遷移學習的應用。為了展示不同遷移學習模型的性能,我們使用了20種有代表性的遷移學習模型進行實驗。這些模型是在三個不同的數據集上執行的,即Amazon Reviews,Reuters-21578和Office-31。實驗結果表明,在實際應用中選擇合適的遷移學習模型是非常重要的。。
網址:
6、Multimodal Intelligence: Representation Learning, Information Fusion, and Applications(多模態智能論文綜述:表示學習,信息融合與應用) 【IEEE Fellow何曉東&鄧力】多模態智能論文綜述:表示學習,信息融合與應用,259篇文獻帶你了解AI熱點技術
京東
作者:Chao Zhang,Zichao Yang,Xiaodong He,Li Deng
【摘要】自2010年以來,深度學習已經使語音識別、圖像識別和自然語言處理發生了革命性的變化,每種方法在輸入信號中都只涉及一種模態。然而,人工智能的許多應用涉及到多種模態。因此,研究跨多種模態的建模和學習的更困難和更復雜的問題具有廣泛的意義。本文對多模態智能的模型和學習方法進行了技術綜述。視覺與自然語言的結合已成為計算機視覺和自然語言處理研究的一個重要領域。本文從學習多模態表示、多模態信號在不同層次上的融合以及多模態應用三個新角度對多模態深度學習的最新研究成果進行了綜合分析。在多模態表示學習中,我們回顧了嵌入的關鍵概念,將多模態信號統一到同一個向量空間中,從而實現了多模態信號的交叉處理。我們還回顧了許多類型的嵌入的性質,構造和學習的一般下游任務。在多模態融合方面,本文著重介紹了用于集成單模態信號表示的特殊結構。在應用方面,涵蓋了當前文獻中廣泛關注的選定領域,包括標題生成、文本到圖像生成和可視化問題回答。我們相信這項綜述可促進未來多模態智能的研究。
網址:
7、Object Detection in 20 Years: A Survey(目標檢測)
密歇根大學40頁《20年目標檢測綜述》最新論文,帶你全面了解目標檢測方法
作者:Zhengxia Zou (1), Zhenwei Shi (2), Yuhong Guo (3 and 4), Jieping Ye
摘要:目標檢測作為計算機視覺中最基本、最具挑戰性的問題之一,近年來受到了廣泛的關注。它在過去二十年的發展可以說是計算機視覺歷史的縮影。如果我們把今天的目標檢測看作是深度學習力量下的一種技術美學,那么讓時光倒流20年,我們將見證冷兵器時代的智慧。本文從目標檢測技術發展的角度,對近四分之一世紀(20世紀90年代至2019年)的400余篇論文進行了廣泛的回顧。本文涵蓋了許多主題,包括歷史上的里程碑檢測器、檢測數據集、度量、檢測系統的基本構建模塊、加速技術以及最新的檢測方法。本文還綜述了行人檢測、人臉檢測、文本檢測等重要的檢測應用,并對其面臨的挑戰以及近年來的技術進步進行了深入分析。
網址:
8、A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications(中文知識圖譜)
作者:Tianxing Wu, Guilin Qi ,*, Cheng Li and Meng Wang
摘要:隨著智能技術的不斷發展,作為人工智能支柱的知識圖譜以其強大的知識表示和推理能力受到了學術界和產業界的廣泛關注。近年來,知識圖譜在語義搜索、問答、知識管理等領域得到了廣泛的應用。構建中文知識圖譜的技術也在迅速發展,不同的中文知識圖譜以支持不同的應用。同時,我國在知識圖譜開發方面積累的經驗對非英語知識圖譜的開發也有很好的借鑒意義。本文旨在介紹中文知識圖譜的構建技術及其應用,然后介紹了典型的中文知識圖譜,此外我們介紹了構建中文知識圖譜的技術細節,并介紹了了中文知識圖譜的幾種應用。
網址:
9、Advances and Open Problems in Federated Learning(聯邦學習)
【重磅】聯邦學習FL進展與開放問題萬字綜述論文,58位學者25家機構聯合出品,105頁pdf438篇文獻
摘要:聯邦學習(FL)是一種機器學習設置,在這種設置中,許多客戶(例如移動設備或整個組織)在中央服務器(例如服務提供商)的協調下協作地訓練模型,同時保持訓練數據分散。FL體現了集中數據收集和最小化的原則,可以減輕由于傳統的、集中的機器學習和數據科學方法所帶來的許多系統隱私風險和成本。在FL研究爆炸性增長的推動下,本文討論了近年來的進展,并提出了大量的開放問題和挑戰。
網址:
10、Optimization for deep learning: theory and algorithms(深度學習優化理論算法)
【2019年末硬貨】深度學習的最優化:理論和算法綜述論文,60頁pdf257篇文獻
摘要:什么時候以及為什么能夠成功地訓練神經網絡?本文概述了神經網絡的優化算法和訓練理論。首先,我們討論了梯度爆炸/消失問題和更一般的不期望譜問題,然后討論了實際的解決方案,包括仔細的初始化和歸一化方法。其次,我們回顧了用于訓練神經網絡的一般優化方法,如SGD、自適應梯度方法和分布式方法,以及這些算法的現有理論結果。第三,我們回顧了現有的關于神經網絡訓練的全局問題的研究,包括局部極值的結果、模式連接、彩票假設和無限寬度分析。
網址:
Attention模型目前已經成為神經網絡中的一個重要概念,注意力模型(AM)自機器翻譯任務【Bahdanau et al 2014】首次引入進來,現在已經成為主流的神經網絡概念。這一模型在研究社區中非常受歡迎,適用領域非常廣泛,包括自然語言處理、統計學習、語音和計算機視覺方面的應用。本篇綜述提供了關于注意力模型的全面概述,并且提供了一種將現有注意力模型進行有效分類的分類法,調查了用于不同網絡結構的注意力模型,并顯示了注意力機制如何提高模型的可解釋性,最后,討論了一些受到注意力模型較大影響的應用問題。