亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本報告重點討論了如何利用模擬或生成模型創建的合成數據來解決深度學習的數據挑戰。這些技術有很多優點:1)可以為現實世界中難以觀察到的罕見情況創建數據;2)數據可以在沒有錯誤的情況下被自動標記;3)數據的創建可以很少或沒有侵犯隱私和完整性。

合成數據可以通過數據增強等技術整合到深度學習過程中,或者在訓練前將合成數據與真實世界的數據混合。然而,本報告主要關注遷移學習技術的使用,即在解決一個問題時獲得的知識被遷移到更有效地解決另一個相關問題。

除了介紹合成數據的生成和轉移學習技術,本報告還介紹了實驗結果,這些結果對合成數據方法在飛行員行為克隆、車輛檢測和人臉驗證任務中的潛力提供了寶貴的見解。實驗的初步結果表明,軍事模擬器和生成模型可以用來支持深度學習應用。然而,性能往往受限于合成數據和真實世界數據之間的保真度差距。

1 引言

深度學習(DL)是一種技術,它提高了在廣泛的現實世界應用中實現復雜任務自動化的能力。翻譯、轉錄、視頻監控、推薦系統和自動駕駛汽車都是基于DL的解決方案已經被開發和部署用于商業目的的例子。在軍事領域,DL有可能支持人類在所有領域和戰爭級別的決策,其應用包括自動目標識別、預測性維護和無人駕駛車輛的自動控制。

與其他機器學習(ML)技術類似,DL使用算法來從數據中提取知識。在這種情況下,知識被編碼在大容量的深度神經網絡(DNNs)中,這些網絡可能由數千、數百萬甚至數十億的可調整參數組成,這取決于所考慮的任務的復雜性。為了正確調整這些參數,學習算法需要大量的訓練數據。沒有這些數據,DNN將無法泛化,因此,當遇到以前未見過的數據時,它將不會有好的表現。

獲取DL的訓練數據是困難的。這在商業應用中是存在的,而在軍事領域更是如此。瓶頸之一是,學習算法通常需要經過人工標注的數據(即為每個輸入數據點提供一個正確的答案)。因此,即使在獲取大量輸入數據相對低成本的情況下,正確標記所有的數據也往往是高成本和費時的。例如,Cityscapes數據集中的5,000個樣本中,每個樣本平均需要1.5個小時來標注(整個數據集大約需要十個月)[1]。此外,由于標注是由人類來完成的,其結果可能是不正確的、有偏見的甚至是有成見的,這也會反映在訓練過的模型的行為上。

此外,訓練數據往往存在長尾分布的問題。也就是說,對于數量有限的普通案例,訓練數據相對容易獲得,但對于大量重要的邊緣案例,訓練數據本身就很難獲得。例如,考慮一個基于無人機的軍用車輛監視和跟蹤系統。在這種情況下,友好車輛的空中圖像相對容易獲得。車輛數據可以在不同的地點、高度、角度、天氣條件、環境等方面獲得。獲取代表合格敵方車隊的類似現實世界的數據集通常是不可能的,因為這種侵入性的情報行動會導致對手的行動。使用遵循長尾分布的數據集訓練的系統通常實用價值有限,因為它只能在條件理想時使用(即,輸入數據與常見情況相似)。當遇到代表邊緣案例的真實世界的數據時,該系統將不會有好的表現,也不能被依賴。

1.1 目的和范圍

本報告的目的是介紹可用于解決軍事背景下有限訓練數據所帶來的一些挑戰的技術。具體來說,本報告重點討論如何將使用軍事模擬或生成模型創建的合成數據與微調、領域適應、多任務學習和元學習等遷移學習技術結合起來,以加速未來DL在軍事領域應用的開發和部署。

1.2 目標讀者群

本報告的目標讀者是操作、獲取或開發AI/ML/DL技術,用于或嵌入軍事系統的人員。

1.3 閱讀說明

本報告假定讀者具有關于ML和DL概念的基本知識,如監督學習、強化學習、損失函數、梯度下降和反向傳播。鼓勵缺乏此類知識的讀者在繼續閱讀本報告之前,先閱讀FOI-報告FOI-R-4849-SE[2]中的第二章。

1.4 提綱

第2章概述了在深度學習中可以用來生成和整合合成訓練數據的技術和方法。第3章概述了轉移學習技術,可以用來促進知識從一個任務到另一個任務的重用。在第4章中,對這些技術的一個子集進行了評估,并提供了深入了解合成數據方法潛力的實驗結果。第5章中提出了結論。

圖2.2: 一幅戰斗機的圖像(2.2a)通過添加噪聲(2.2b)、濾色器(2.2c)和模糊(2.2d),以及通過縮放(2.2e)和縮放后的旋轉(2.2f)得到增強。每幅圖像都附有所有像素的平均RGB值分布的相應圖表。雖然所有圖像在語義上是不變的,但分布的形狀卻有很大的不同。

圖4.7:從我們的訓練數據集中隨機選擇的合成圖像。對于每一對圖像,左邊顯示的是最初生成的臉,右邊顯示的是編輯過的臉。請注意,所有圖像都在臉部周圍進行了裁剪。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

美國海軍和國防部(DOD)正在優先考慮在各戰爭領域迅速采用人工智能(AI),以保持對美國有利的技術優勢。機器學習(ML)是最近人工智能發展的基礎,它存在著一個持續的、沒有得到充分解決的關鍵缺陷:對抗性樣本。自2013年發現以來,在深度神經網絡(DNN)分類器中出現了許多新形式的對抗性樣本攻擊,并提出了許多狹義和特殊的防御措施。這些防御措施都沒有經受住反測試。一些研究人員提出,這種易受攻擊性可能是不可避免的。到目前為止,還沒有發現有效的、可計算的、通用的方法,可以加固DNN,使其免受這種和相關的泛化問題的影響。我們的前提是,ML模型對所有對抗性樣本的魯棒性與抵抗力,可以通過將模型分類空間數據密集區之間的數據點稀疏的潛在空間,作為障礙隔離來改進。我們研究了兩種不同的方法來實現這種對基于對抗性樣本的攻擊防御,測試這些防御對最有效的攻擊,并將結果與現有的技術狀態的防御進行比較。

第一章 引言

人工智能(AI)已被提出來作為推進國防部能力的一個關鍵推動因素。人工智能國家安全委員會在其最終報告中寫道:"如果我們的武裝部隊不加速采用人工智能,他們的軍事技術競爭優勢可能會在未來十年內喪失",建議 "美國現在必須采取行動,將人工智能系統投入使用,并在人工智能創新方面投入大量資源,以保護其安全,促進其繁榮,并保障民主的未來" [1]。鑒于人工智能或更具體地說,深度神經網絡(DNN)中的機器學習(ML)最近在科學和工業領域取得了廣泛的突破,這種關注無疑是恰當的。然而,在國防應用中利用ML和其他現代 "深度學習 "方法并非沒有其固有的附加風險。

最近的人工智能主張已經近乎夸大其詞;當然,在與軍事和文職領導層的高層溝通中,也發生了一些夸大其詞的情況。作為這種夸張的例子,參考一下《2019年美國總統經濟報告》是如何向美國領導人介紹機器視覺方面的人工智能狀況的。在第343頁題為 "2010-17年人工智能和人類的圖像分類錯誤率 "的圖表中,它顯示了 "人類分類 "錯誤率與機器分類錯誤率將在2015年超過人類圖像分類能力。對這一說法仔細考慮并對參考研究甚至是當前最先進研究進行檢查,顯示這一特殊的發展仍然是一個遙遠的、尚未達到的里程碑。

1.1 深度學習的突破

即使ML仍然存在挑戰,近年來,機器學習在科學、工業和商業領域的成功應用也在急劇增加。深度神經網絡已經在自然語言處理、天文學、癌癥診斷、蛋白質折疊、語音識別和機器視覺等不同領域取得了巨大的進步[2]-[8]。因此,這類系統的潛在軍事應用同樣比比皆是:分析頻譜上下的聲學和電磁傳感器數據、機器視覺、尋找-修復-跟蹤和瞄準對手的飛機、地下、水面和陸地戰斗人員、人類語言處理、語音識別、自主空中/地面/地下/陸地車輛、信息戰、情報、監視和偵察(ISR)整合、機器人技術、網絡防御、網絡攻擊、戰術決策輔助,等等。

1.2 深度學習的脆弱性

盡管這項技術帶來了巨大進步,但目前的ML分類方法創建的模型在其核心上是有缺陷的,因為它們非常容易受到對抗性樣本攻擊和相關欺騙技術的影響[9]。廣義上講,文獻中定義的這類攻擊有三類:探索性攻擊、逃避性攻擊和中毒性攻擊。在本報告中,我們主要關注防御我們認為最關鍵的需求,即逃避攻擊。為了提供背景,我們簡要地概述了這三種攻擊。探索性攻擊,對手并不試圖實現錯誤分類,而是試圖通過精心設計輸入來獲得模型的知識,這些輸入的結果將提供關于模型內部狀態的信息,其目的是減少模型的不確定性,以支持未來的攻擊。中毒攻擊試圖在訓練期間修改模型,以偷偷地完成模型的一些未被發現的行為變化。最后,在逃避攻擊中,攻擊者不知不覺地修改了人工制定或模型的輸入,以產生分類的變化,從良性的或最初設定的類別到一些其他的、欺騙性的不真實的類別[10]。這最后一類是我們防御的重點,從這一點出發,我們把這些簡單地稱為對抗性樣本攻擊[11]。

自從2013年最初發現DNN分類器中的對抗性攻擊(逃避)以來,已經出現了許多種這樣的攻擊,并且至少提出了同樣多的狹義的特定防御措施作為回應。不幸的是,到目前為止,所提出的防御措施沒有一個能經受住反測試和適應性攻擊[12]。一些研究人員提出,這種易感性可能是空間中問題表述的一個不可避免的特征[13]。目前,還沒有發現一種有效的、計算上可接受的、通用的方法,可以支撐DNN對抗類似的相關的泛化問題[12], [14]。

1.3 國防部(DoD)的影響

在國防部的范圍內,大家都承認欺騙在戰爭中起著核心作用。因此,戰爭系統必須被設計成對欺騙有高度的適應性[15]。馬基雅弗利在“Prince”中寫道:"......雖然在任何行動中使用欺騙都是可憎的,但在發動戰爭時,它是值得稱贊的,并能帶來名聲:用欺騙征服敵人與用武力征服敵人一樣受到稱贊。" 對孫子來說,這甚至是更重要的因素,"所有的戰爭都是基于欺騙"。在國防應用中,至關重要的是,不僅系統在戰斗開始時就如設計之處那樣工作,而且它們應該具備有彈性對狡猾的、有同樣資源和動機的對手的潛在計劃。

誠然,ML在民用和科學方面已經取得了巨大的成功。盡管民用工業技術領域與軍事技術需求有很大的內在交集,但應該注意到,后者并不是前者的完美子集。也就是說,戰爭的現實要求其技術必須為虛假信息和故意欺騙的行動、展示和通信做好準備。這兩個領域之間的這些不同假設意味著,在一個領域已經準備好的東西,在另一個領域可能還沒有準備好。在整個國防部,納入這些技術的系統正在被考慮、開發,在某些情況下已經被采用,目的是增強或取代我們一些最關鍵的國家安全能力。在軍事應用中,特別是武器系統和殺傷鏈內的系統,必須消除或至少減少對抗樣本,并對其進行補償,使故障呈現最小的風險。其余的風險必須被明確指出、發現并被作戰人員充分理解。不仔細和充分地解決這個問題是不可想象的,否則我們就有可能采用脆弱性技術,將災難性的漏洞引入我們關鍵戰爭系統。

1.4 增強防御措施

在防御基于機器學習技術的系統不受欺騙的潛在戰略背景下,我們介紹了一種防御措施。我們的前提是,ML模型對所有對抗性樣本的魯棒性與抵抗力,可以在模型分類器的分類空間數據密集區之間的數據點稀疏潛在空間中插入一個 "填充 "或 "屏障 "的方法來提高[13], [16]。我們相信,通過統計學插值或采用變分自動編碼器(VAE)[17]或生成對抗網絡(GAN)[18]來插值和投射到這個空間的模型可以創建人工填充類樣本來增加數據集,所產生的模型將能夠成功地區分合法數據點和對抗性樣本,同時保持與最先進分類方法相稱的準確性。

付費5元查看完整內容

軍事環境產生了大量的重要數據,需要使用機器學習對其進行處理。它通過分析產生的大量信息來學習和預測可能的場景的能力提供了自動學習和決策支持。本文的目的是提出一種應用于軍事組織的機器學習體系結構模型,并以應用于非軍事組織體系結構模型的文獻計量學研究為支撐。為此,進行了截至2021年的文獻計量學分析,制作了戰略圖并對結果進行了解釋。所使用的信息是從科學界廣泛接受的一個主要數據庫ISI WoS中提取的。沒有直接使用軍事消息來源。本工作分為五個部分: 軍事領域的機器學習研究; 使用SciMat、Excel和VosViewer工具解釋我們的研究方法; 該方法基于數據挖掘、預處理、聚類歸一化、戰略圖及其結果分析來研究軍事背景下的機器學習; 在此基礎上,我們提出了一種軍事應用的概念架構; 最后,我們給出結論,在這里我們將看到機器學習最重要的領域和最新的進展,在這個例子中,應用到軍事環境中,分析大量數據,提供效用,機器學習和決策支持。

機器學習(ML)通過利用來自不同來源(包括大數據應用程序)的大量可用信息,實現了許多任務的自動化。它的使用目前正在廣泛的傳播,而ML已經成為我們日常生活中[1]的重要組成部分。在軍隊中,智能應用的使用也加速了[2]的發展。例如,韓國國防部大幅增加了其信息,隨著越來越少的情報分析師,他們需要應用人工智能(AI)技術來準確、及時地處理所有信息[3]。另一個值得注意的例子是軍事設備和機器對石油的依賴。這也是ML發揮作用的地方,因為軍事后勤必須基于明智的推理[4];因此,我們看到了ML是如何融入軍事世界的。本文的目的是提出一個體系結構模型,以反映如何在軍事環境中實際應用數學模型。在這個架構中,我們解決了在軍事環境中使用最頻繁的數據、算法和應用等方面的問題。

在開展這項工作的同時,正如我們將在第2節中看到的,我們研究了相關工作,注意到在這一新興主題中很少有綜述工作,這引起了我們對對主要科學數據庫之一Web of Science進行到2021年及包括2021年的文獻計量分析的興趣。在本節中,我們還提出了一個概念架構,以一種實際的方式在非軍事組織中應用ML,因為在軍事領域中沒有反映這種架構的作品。本工作中使用的文獻計量方法在第3節中解釋,我們將主要使用SciMat文獻計量分析工具,能夠在一個縱向框架[5]中執行科學的繪圖分析。通過這一分析,我們建立了一個戰略圖,其中我們確定了ML應用于軍事領域的主要領域。在第4節中,我們應用所描述的方法來根據起源進行分析:我們看到了ML應用于軍事世界的主要科學領域; 在第5節中,一旦完成了文獻計量分析,我們現在可以重新定義第2節中提出的概念架構,特別是針對軍事組織。最后,我們得出了一些結論,其中我們揭示了所獲得的結果與發現的主要主題領域和結論。

圖1 用于軍事組織的數據驅動架構

付費5元查看完整內容

美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。

美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示

國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。

當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早

付費5元查看完整內容

摘要

人在環路是通過整合人類的知識和經驗,以最小的代價訓練出準確的預測模型。借助基于機器的方法,人類可以為機器學習應用提供訓練數據,直接完成一些流水線中計算機難以完成的任務。在本文中,我們從數據的角度對現有的關于人在環路的研究進行了綜述,并將其分為三大類: (1) 通過數據處理提高模型性能的工作,(2) 通過干預模型訓練提高模型性能的工作,(3) 系統獨立的人在環路的設計。通過以上分類,我們總結了該領域的主要方法,以及它們的技術優勢/弱點,并在自然語言處理、計算機視覺等方面進行了簡單的分類和討論。此外,我們提供了一些開放的挑戰和機會。本綜述旨在為人在環路提供一個高層次的總結,并激發感興趣的讀者考慮設計有效的人在環路解決方案的方法。

//arxiv.org/abs/2108.00941

引言

深度學習是人工智能的前沿,旨在更接近其主要目標——人工智能。深度學習已經在廣泛的應用中取得了巨大的成功,如自然語言處理、語音識別、醫療應用、計算機視覺和智能交通系統[1,2,3,4]。深度學習的巨大成功歸功于更大的模型[5]。這些模型的規模包含了數億個參數。這些數以億計的參數允許模型有更多的自由度,足以令人驚嘆的描述能力。

但是,大量的參數需要大量的標簽[6]的訓練數據。通過數據標注提高模型性能有兩個關鍵的挑戰。一方面,數據增長速度遠遠落后于模型參數的增長速度,數據增長主要阻礙了模型的進一步發展。另一方面,新任務的出現遠遠超過了數據更新的速度,對所有樣本進行注釋非常費力。為了應對這一挑戰,許多研究人員通過生成樣本來構建新的數據集,從而加快了模型迭代,降低了數據標注的成本[7,8,9,10,11]。此外,許多研究人員使用預訓練方法和遷移學習來解決這一挑戰[12,13,14,15,16],如transformer[17,18]、BERT[19]和GPT[20]。這些工作取得了令人難以置信的成果。

然而,生成的數據僅用作初始化模型的基礎數據。為了獲得高精度的可用模型,往往需要對具體數據進行標注和更新。因此,一些基于弱監督的工作被提出[21,22,23,24]。一些研究人員提出使用少樣本來促使模型從更少的樣本中學習[25,26,27]。在學習框架中集成先驗知識是處理稀疏數據的有效手段,因為學習者不需要從數據本身[28]中歸納知識。越來越多的研究人員開始嘗試將訓練前的知識納入他們的學習框架[29,30,31,32]。作為代理,人類有著豐富的先驗知識。如果機器可以學習人類的智慧和知識,它將有助于處理稀疏數據。特別是在臨床診斷和訓練數據缺乏等醫學領域[33,34,35,36]。

一些研究人員提出了一種名為“人在環路”(human-in- loop, HITL)的方法來解決這一挑戰,該方法主要通過將人類知識納入建模過程[37]來解決這些問題。如圖1所示,human-in-the-loop(即“human-in-the-loop”和“machine learning”)是機器學習領域一個活躍的研究課題,近十年來發表了大量的論文。

如圖2所示,傳統的機器學習算法一般由[38]三部分組成。第一個是數據預處理,第二個是數據建模,最后一個是開發人員修改現有流程以提高性能。我們都知道,機器學習模型的性能和結果是不可預測的,這就導致了很大程度的不確定性,在人機交互的哪個部分能帶來最好的學習效果。不同的研究者關注的是人工干預的不同部分。本文根據機器學習的處理方法對這些方法進行分類,分為數據預處理階段和模型修改和訓練階段。此外,更多的研究集中在獨立系統的設計上,以幫助完成模型的改進。因此,在本文中,我們首先從數據處理的角度討論了提高模型性能的工作。接下來,我們討論了通過干預模式訓練提高模型性能的工作。最后,討論了獨立于系統的“人在環路”的設計。

付費5元查看完整內容
北京阿比特科技有限公司