利用無人地面飛行器(UGV)進行自主導航和未知環境探索極具挑戰性。本報告研究了一種利用小尺寸、低重量、低功耗和低成本有效載荷的測繪和探索解決方案。本文介紹的平臺利用同步定位和繪圖功能,通過尋找可導航路線來有效探索未知區域。該解決方案利用多種傳感器有效載荷,包括輪子編碼器、三維激光雷達、紅-綠-藍相機和深度相機。這項工作的主要目標是利用 UGV 的路徑規劃和導航功能進行測繪和探索,從而生成精確的 3D 地圖。所提供的解決方案還利用了機器人操作系統。
本文探索了既能提供全覆蓋路徑規劃,又能避開負面障礙物的方法。這些方法專門針對無人地面車輛(UGV),因為它們需要不斷與可穿越的地面進行交互。在仿真中測試了多種潛在解決方案,并在本文中介紹了測試結果。對全覆蓋路徑規劃器(FCPP)方法進行了評估,主要是看它們是否能將路徑離散化,是否能有效地使用航點,以及是否能與當前的機器人平臺輕松集成。對于負障礙物,探索了能與當前導航堆棧集成的方法。首選解決方案將允許遠程操作、航路點導航和完全自主,同時避開正面和負面障礙物。
2021 年 9 月,在 2022 年陸軍機動支援和維持能力發展集成局主辦的機動支援、維持和保護集成實驗(MSSPIX)中展示了機器人平臺。在為期三天的時間里,三名士兵接受了使用機器人平臺的培訓。士兵們學會了使用手動導航、半自動航點導航和自主探索來繪制隧道和建筑物內部地圖。該團隊成功展示了一種平臺無關的無人地面運載工具(UGV)邊緣計算(利用機載硬件做出毫秒級低延遲決策)和傳感器有效載荷,用于勘測和繪制內部結構(包括地下環境)。具體來說,UGV 能夠在士兵不進入潛在危險環境的情況下實現三種操作模式:遠程操作、航點導航或自主繪圖。根據這些經驗和士兵的反饋,團隊確定了導航需要改進的兩個方面。
起初,假定在電池容量有限(約 3 小時)的情況下,自主導航的主要目標是在最短時間內覆蓋盡可能多的地面。因此,采用了基于前沿探索的方法。在這里,前沿被定義為機器人已經探索過的區域和尚未探索的區域之間的邊界。優先考慮數學上最大的邊界。在這種情況下,可以在相對較短的時間內提供一棟建筑的整體平面圖,但較小的房間則無法徹底探索。因此,如果行動概念(CONOP)也涉及到識別感興趣的對象,那么這種方法就有可能錯過感興趣的對象,尤其是如果該對象位于較小的房間中。因此,團隊研究了可用于徹底探索房間的全覆蓋路徑規劃器 (FCPP)。本報告的一個方面就是討論如何使用全覆蓋規劃器。
MSSPIX 22 演示中出現的另一個問題是負面障礙物。雖然機器人能夠很好地識別和避開正面障礙物,但負面障礙物,如下樓梯或地板上的洞,卻超出了機器人的初始能力。由于在演示之前已經知道了這些負面障礙物,因此能夠使用虛擬障礙物來阻止機器人探索這些區域。然而,必須開發一種方法來處理負面障礙,尤其是在無法獲得事先知識的情況下。因此,本報告的第二個方面側重于識別負面障礙。
本報告涉及《陸軍多域情報》中確立的重點領域: 21-22 財年科技重點領域》(參謀部副參謀長辦公室,2020 年)中確定的重點領域。具體而言,認為這項工作涉及到 "戰爭將以超高速、超大規模進行,由機器人和自主系統(RAS)、機器學習(ML)和人工智能(AI)能力等技術主導,這些技術可廣泛獲取、打包并隨時投入使用"(5)。通過整合全覆蓋規劃和檢測負面障礙物的能力,實現了創建更高效自主系統的目標。
方法包括在模擬中運行全覆蓋規劃器和負障礙物檢測方法。為了測試這兩種方案,使用了 Clearpath Robotics(2021 年)公司的 "障礙世界"。障礙世界是一個虛擬定義的室內世界,可作為全覆蓋規劃器的封閉區域,而非平面地板則可用于負障礙物檢測的模擬測試。圖 1 顯示了模擬環境中的世界。整個世界中出現的負障礙物都被標注出來。用于加載虛擬環境和機器人的完整啟動文件可在 0 部分附錄 A 中找到。啟動文件中包含的幾個參數可用于調整環境,包括機器人的起始位置和世界比例。為了啟動世界,使用了以下節點: 在這里,節點被定義為執行計算的進程。
目標是利用全覆蓋規劃器徹底探索每個房間,同時利用負障礙物檢測節點防止機器人被卡住。全覆蓋規劃器需要一個占用網格來規劃路徑。圖 2 顯示了用于路徑規劃的占用網格。由于占用網格通常是三元網格,空間通常被標記為占用(黑色)、空閑(白色)和未知(灰色)。因此,負障礙物無法識別,規劃的路徑將穿越非平面樓層幾何體。負障礙物的大小與車輪直徑大致相同,這意味著如果機器人掉入負障礙物中,將不太可能逃脫,從而無法完成任務。
本文探討了無人地面車輛(UGV)應用中的 2.5D 和 3D 路徑規劃。對于 2.5D 實時導航,我們研究了使用高程或可穿越性生成 2.5D 占位網格,以確定路徑成本。與海拔高度相比,使用由表面法線生成的分層方法生成的可穿越性在測試環境中更為穩健。分層方法也用于三維路徑規劃。雖然可以實時使用三維方法,但生成三維網格所需的時間意味著,有效進行路徑規劃的唯一方法是使用預先存在的點云環境。因此,我們探索從各種來源生成三維網格,包括手持式傳感器、UGV、UAV 和航空激光雷達。
本報告涉及《陸軍多域情報: 21-22 財年科技重點領域》(參謀部副參謀長辦公室,2020 年)。具體而言,在傳感器部分,本報告與以下需求相關: "傳感器和機器人平臺的新組合,不僅能在地形上移動,還能機動感知"(4)。傳統上,無人地面車輛(UGV)以二維方式導航,并將世界劃分為已知、未知和障礙。本報告試圖通過在地圖中加入實際地表信息,將導航擴展到 2.5維和 3維尺寸。更高的維度可以提高導航效率。
這項工作還涉及 "戰爭將以超高速、超大規模進行,由機器人和自主系統 (RAS)、機器學習 (ML) 和 AI [人工智能] 能力等技術主導,這些技術可廣泛獲得、打包并隨時投入使用"(參謀部副參謀長辦公室 2020,5)。雖然不在本文討論范圍之內,但基于前沿的 2D 探索軟件包(Christie 等人,2021 年)將與我們的 2.5D 方法配合使用。
在這里,探討了兩個專門用于 2.5D 和 3D 導航的 ROS 軟件包。為了生成 2.5D 占位網格,我們使用了 grid_map 軟件包(Fankhauser 2019;Fankhauser 和 Hutter 2016)。雖然 grid_map 軟件包最初是為腿式機器人導航各種地形而設計的,但它也可用于 UGV 平臺,以維護地表信息。圖 2 顯示了網格地圖的一個示例。通常,我們使用三維激光雷達生成網格圖。不過,這里的網格圖是 2.5D,這意味著我們用一個值來表示 z 方向。如果點云提供的兩個不同坐標的 x 值和 y 值相同,但 z 值不同,則網格圖會保留較高的 z 值。紫色和藍色等冷色表示海拔較低,紅色和橙色等暖色表示海拔較高。grid_map 軟件包提供了多種有用的轉換格式,包括 costmap_2d、OpenCV、OctoMap、點云庫 (PCL),甚至是有符號距離場 (SDF)。costmap_2d 轉換與我們的導航最相關。不過,在調整參數時,查看 pointcloud2、Vectors 和 GridCells 數據的功能特別有用,因為它們都有自己的參數文件,可以根據具體情況進行調整。
還研究了用于三維路徑規劃的 mesh_navigation(Pütz,2019 年;Pütz 等,2021 年)。圖 3 包含一個網格導航示例。在這個示例中,粉色和藍色等冷色調表示可穿越的地形,而紅色則表示障礙物。使用網格導航的一個好處是,陡坡(即負面障礙物),如樓梯,會被標記為紅色并避開。因此,機器人的路徑是沿著斜坡規劃的。
使用網格導航的另一個優勢是,路徑是沿著實際網格規劃的,因此很容易識別和避免縫隙和陡坡。此外,航點可以有不同的 z 值,規劃器會明確考慮這一點。例如,在圖 4 中,起點位置海拔較高,而目標位置海拔較低。因此,網格導航可以使用最能實現海拔高度變化的路線,成功地將機器人引導到目標位置。而 2D 或 2.5D 方法則無法做到這一點。
此外,如圖 5 所示,網格可以沿同一 Z 軸存在多個點。這也是 2D 或 2.5D 方法無法實現的。圖 5 還表明,mesh_navigation 軟件包可以有效地利用三維網格來規劃隧道路徑,以達到預定目標。
本節中的圖表使用在線數據集生成(奧斯納布呂克大學,2020 年)。不過,本報告的其余部分將重點介紹從各種輸入源生成可穿越網格的情況。
本文通過機器學習方法提出了一種雷達任務選擇的主動方法,并將其設計在雷達調度流程之前,以提高雷達資源管理過程中的性能和效率。該方法由兩個過程組成:任務選擇過程和任務調度過程,其中任務選擇過程利用強化學習能力來探索和確定每個雷達任務的隱藏重要性。在雷達任務不堪重負的情況下(即雷達調度器超負荷工作),將主動選擇重要性較高的任務,直到任務執行的時間窗口被占滿,剩余的任務將被放棄。這樣就能保證保留潛在的最重要任務,從而有效減少后續調度過程中的總時間消耗,同時使任務調度的全局成本最小化。本文對所提出的方法進行了數值評估,并將任務丟棄率和調度成本分別與單獨使用最早開始時間(EST)、最早截止時間(ED)和隨機偏移開始時間EST(RSST-EST)調度算法進行了比較。結果表明,與EST、ED和RSST-EST相比,本科學報告中提出的方法分別將任務丟棄率降低了7.9%、6.9%和4.2%,還將調度成本降低了7.8倍(EST為7.8倍)、7.5倍(ED為7.5倍)和2.6倍(RSST-EST為2.6倍)。使用我們的計算環境,即使在超負荷的情況下,擬議方法所消耗的時間也小于 25 毫秒。因此,它被認為是提高雷達資源管理性能的一種高效實用的解決方案。
雷達資源管理(RRM)對于優化作為飛機、艦船和陸地平臺主要傳感器的現代相控陣雷達的性能至關重要。報告》討論了雷達資源管理,包括任務選擇和任務調度。該課題對國防科技(S&T)非常重要,因為它與現代相控陣雷達的大多數應用相關。它對當前的海軍雷達項目尤為重要,該項目探索了雷達波束控制的人工智能(AI)/機器學習(ML)方法。所提出的算法有可能升級未來的艦船雷達,從而做出更好的決策并提高性能。
本報告概述了我們在基于模型的自適應目標跟蹤以及識別來自電磁干擾(EMI)源的衛星欺騙和干擾攻擊方面所做的研究工作。我們假設可以利用不同電磁干擾源的射頻(RF)特征來識別和跟蹤主動和被動電磁干擾源。射頻信號被輸入一個基于模型的深度神經網絡(DNN),該網絡可對不同物體進行分類和跟蹤。
我們的初步結果表明,對于有源電磁干擾源,即使用不同調制方案發射射頻信號的源,使用 DNN 識別電磁干擾源射頻調制方案的準確性在很大程度上取決于射頻信號的質量,而射頻信號的質量又是信道的函數。特別是,如果信道是視距信道,且信噪比(SNR)較大,則調制類型的分類準確率很高(> 95%)。另一方面,如果信道參數未知和/或波動較大,信噪比較低,則分類準確率較低(< 60%)。調制類型識別的性能使我們得出結論,在現實世界中基于調制類型的目標跟蹤將非常困難。因此,這項研究的主要工作集中在使用有源雷達對無源信號源進行分類,并以人員計數系統為原型。
我們沒有使用模擬,而是在實驗室建立了一個小規模的測試環境來驗證假設。我們提出的人員計數系統使用多個發射天線,通過發送毫米波雷達啁啾掃描環境。物體反彈回來的信號由多個接收天線接收、處理并存儲到數字數據庫中。然后,我們對數字數據進行特征提取,并將特征輸入卷積神經網絡,以進行物體分類和跟蹤。在這些實驗中,我們將行走的人視為移動物體。我們的初步結果表明,在有限的環境中(如實驗室環境),卷積神經網絡可以利用射頻信號準確識別不同的物體(> 95%)。
圖 4. 從射頻信號中提取特征。特征/物體包含已識別物體的數量、其多普勒速度、其 x、y、z 位置和相對信噪比。
目前的自動空中加油(AAR)工作利用機器視覺算法來估計接收飛機的姿勢。然而,這些算法取決于幾個條件,如精確的三維飛機模型的可用性;在沒有事先給出高質量信息的情況下,管道的準確性明顯下降。本文提出了一個深度學習架構,該架構基于立體圖像來估計物體的三維位置。研究了使用機器學習技術和神經網絡來直接回歸接收飛機的三維位置。提出了一個新的位置估計框架,該框架基于兩個立體圖像之間的差異,而不依賴于立體塊匹配算法。分析了其預測的速度和準確性,并證明了該架構在緩解各種視覺遮擋方面的有效性。
圖3:利用的坐標系統。紅軸代表X軸,綠軸代表Y軸,藍軸代表Z軸。所有顯示的箭頭表示該軸上的正方向。
作者正在研究分布式雷達在穿墻感應中的應用。這項技術的預期操作場景是在建筑物外的(安全)遠程距離內探測和識別建筑物內的人員和武器裝備。本研究使用的雷達結構和信號處理算法類似于美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)實施的埋藏和隱蔽表面目標探測的設計;目前的雷達發射和接收頻率更高。
在這項研究中,實驗是在ARL的阿德爾菲實驗中心(ALC)507號樓("沙盒 "區域)進行的,使用的是室內低金屬兩層夾板結構。用來測試分布式雷達的受控環境與用來測試ARL針對電子目標的諧波雷達的低金屬環境相同。
圖1 步進頻率雷達收發器:(a)賽靈思的RFSoC與Alion/HII的雷達固件,以及(b)定制的發射器/接收器(Tx/Rx)濾波器和放大器PCB,由28VDC供電
本研究中收集的數據表明,在低矮的金屬建筑中,相互成直角的天線對能夠探測到多個移動目標,而這些目標從建筑外是看不到的。隨時間變化的距離圖顯示了目標所遵循的路徑;在一個頻道中跟蹤的目標路徑的模糊性可以通過在另一個頻道中跟蹤同一目標來緩解。仍需努力將同時收集的數據的IQ振幅一致地結合起來,以解決多個目標。一個目標是在二維(下行和上行)圖像上繪制目標位置,也許是以視頻動畫的形式疊加在場景的俯視圖上(即被成像的建筑物的典型平面圖)。在對移動目標進行成像時,發射器和接收器天線的雙穩態配對是否具有優勢(與標準的單穩態發射器天線配對相比)還有待確定。
本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:
出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。
美國政府面臨著保持作為世界上空間物體編目數據提供者的步伐挑戰。用非傳統的傳感器來增強能力,是一種快速和低成本的改進。然而,巨大的交易空間和未開發的系統性能要求給成功的資本化帶來了挑戰。本文旨在通過一個多學科的研究,更好地定義和評估增強功能的效用。
假設的望遠鏡架構在不同的時間里被建模和模擬,然后在啟發式算法中使用多目標優化對性能措施和約束進行評估。決策分析和帕累托優化確定了一套高性能的架構,同時保留了決策者設計的靈活性。
建議將容量、覆蓋率和未觀察到的最大時間作為關鍵性能指標。在1017個架構中,共有187個被確定為最佳表現者。總共有29%的傳感器被發現在80%以上的頂級架構中。其他考慮因素進一步將交易空間減少到19個最佳選擇,這些選擇為每個空間物體平均收集49-51個觀測數據,平均最大未觀測時間為595-630分鐘,提供地球同步軌道帶的冗余覆蓋。這意味著與模擬的僅有政府的基線結構相比,能力和覆蓋面增加了三倍,未觀察到的最大時間減少了2小時(16%)。
這項研究利用基于物理學的模型和現代分析技術,驗證了增強型網絡概念的效用。它客觀地回應了要求改進編目工作的政策,而不是僅僅依靠專家得出的點解決方案。
本報告總結了迄今為止在路線偵察領域的本體開發的進展,重點是空間抽象。我們的重點是一個簡單的機器人,一個能夠感知并在其環境中導航的自主系統。該機器人的任務是路線偵察:通過觀察和推理,獲得有關條件、障礙物、關鍵地形特征和指定路線上的敵人的必要信息。路線偵察通常是由一個排的騎兵和非騎兵進行的。這項研究探討了機器人執行部分或全部必要任務的合理性,包括與指揮官進行溝通。
這是一項具有挑戰性的對抗性任務,即地形穿越加上信息收集和解釋。偵察的解釋方面需要考慮語義學--確定相關的信息和確定它如何相關(即有意義)。語義信息在本質上是定性的:例如,危險是一個定性的概念。為了將危險與某些特定的區域聯系起來,我們需要一種方法來指代該區域。這意味著至少能夠給空間的某些部分附上定性的標簽。
Kuipers在他的空間語義層次的早期工作中指出了空間的定性表示對機器人探索的重要性。例如,層次結構的拓撲層次包含了 "地方、路徑和區域的本體",歸納產生了對較低層次的因果模式的解釋。
最近,Izmirlioglu和Erdem為定性空間概念在機器人技術中的應用提供了以下理由:
對于負責路線偵察的無人地面車輛(UGV)來說,其架構中的不同模塊將消費和產生語義信息:負責語義感知和目標識別、計劃和執行、自然語言對話等的模塊,加上主要負責維護信息的語義世界模型。例如,在美國陸軍作戰能力發展司令部陸軍研究實驗室的自主架構中,語義/符號世界模型被用來 "實現符號目標(例如,去接近一個特定的物體)",*其中接近是一個語義概念。
一個關鍵問題是如何在世界模型和其他模塊之間分配維護和處理不同類型語義信息的責任。從語義世界模型的角度來看,這取決于有多少符號推理是合適的。例如,假設要接近的物體位于一個給定區域的某個位置,而不是靠近該區域的外部邊界。一旦機器人靠近物體,就可以推斷出機器人在物體的位置附近,而且也在同一區域內。如果有公制信息,就可以用幾何例程得出這個結論。在沒有公制信息的情況下,是否會出現在純粹的定性空間中推斷有用的情況?
本報告不涉及這個問題。我們的目標是確定什么應該被代表,而把如何代表和在哪里代表留給未來的工作。
以下片段取自FM7-92中對路線偵察的描述。空間表達是彩色的,周圍有一些文字作為背景。
路線偵察的結果是一份報告,以圖表的形式,并附有文字說明。FM7-92給出了一個例子,我們可以從中提取一些更必要的概念:
讓我們把這段關于路線偵察的描述中提到的概念建立一個綜合清單,重點放在空間概念上,并盡可能地保留軍事術語:
1)必須指定環境中的位置、路線、區域和感興趣的物體。稱這些為 "實體"。
2)這些實體之間的空間關系是相關的(例如,一個地點在另一個地點的北邊)。值得注意的是,不同類型的實體之間的關系是被指定的。
a. 物體(例如,障礙物)在位置或區域。
b. 一些地點在空間上與路線有關(例如,沿著路線,毗鄰,或靠近道路)。
c. 地點可能代表更大的區域(例如,雷區的位置)。
d. 道路和小徑可以與路線相關:它們可能相交、重疊(部分疊加),或平行運行。
a. 一些地點相對于其他地點或區域有方向性的定位(例如,一個防御性的位置)。
b. 有些區域是由其與另一個區域或地點的關系來定義的,這可能不是一種局部的關系(例如,觀察和火力場是由一個潛在的遠程位置來定義的,該位置有一條通往路線上的一個區域的線路)。
4)路線可能被障礙物阻擋,障礙物可能是明確的物體或更大的區域(例如,一個障礙物與一個雷區)。
6)有時,描述物理基礎設施(如道路、橋梁)及其屬性是很重要的。
路線偵查收集和解釋不同種類和不同來源的信息:
背景知識。這包括關于環境特征的類型和預期成為任務一部分的物體的信息,包括道路、障礙物、溝壑、橋梁等等。
任務規范。確定偵查的區域和路線,以及當時可獲得的任何信息。
環境。通過空間分析(包括幾何學、拓撲學等)、感知、地圖衛星數據的離線圖像處理和其他類型的分析,確定環境的相關特征。
任務執行期間的通信。我們假設指揮官或人類操作員在偵察過程中可以向UGV提出詢問或命令,提供新信息或集中注意力。
如前所述,一份報告。
原則上,所有這些信息都以某種抽象的形式組合在一個語義世界模型中。我們把環境的物理屬性和特征稱為 "實體"。把我們用來表示這些實體和它們之間關系的抽象概念稱為 "概念"。
不同類型的實體的概念。層次結構在語義表征中很常見,用來捕捉關于世界上遇到的實體類型的一般知識。一個類型就是一個概念,類型被組織在一個層次中:MRZR是一種輕型的、戰術性的、全地形的車輛,它是一種輪式地面車輛,它是一種地面車輛的類型,等等。屬性和關系可以與一個給定的概念相關聯,而下級概念則繼承這些屬性。在路線偵察中,如果有信息說某一地區有一條道路,但沒有更多的細節,仍然可以從道路的概念中推斷出它的預期屬性:它比它的寬度長得多;它在人們感興趣的地點之間通向;在其他條件相同的情況下,它可能比周圍的地形行駛得快。從實用的角度來看,這意味著如果有可能將某物歸類為一個已知的概念,那么語義世界模型就不需要記錄關于該物的每一條相關信息。
用于實體的目的和用途的概念。一個代表道路典型用途的概念可以進一步區分其長度和寬度的語義,這反過來又導致了跨越和沿途、穿越和跟隨等概念之間的區別。這將使UGV能夠以不同的方式對待 "偵察道路對面的區域 "和 "偵察前方的道路 "的命令。前方的道路也是一個語義概念:它取決于對過去去過的地方的了解。
代表部分信息的概念。有時可能會有定性的信息。想象一下,任務規范的一部分是關于雷區在計劃路線上存在的信息,但不知道具體位置,或者知道雷區的位置,但不知道其范圍。這種無知可以很容易地在代表實體的概念中得到體現。
新概念適用于新環境。另一個交流的例子可能是信息性的。想象一下,當一輛UGV穿越一條東西走向的道路時,它與遠程指揮官進行交流,指揮官問道:"道路北側是什么?"* 需要識別的物體可能不在道路和地形的邊界上(與 "建筑物的一側 "形成對比),而是在以道路邊緣為界的某個感興趣的區域內,距離UGV的位置向北不遠,向東和向西也有一些距離。這個區域可能沒有事先作為一個概念被劃定;相反,它是在當前的背景下構建或推斷出來的。這是一個有趣的例子,一個概念不是從公制數據中抽象出來的,而是被強加在公制數據上的。
背景中的概念的適應和組合。想象一下,對一張地圖的分析產生了對代表區域、道路等等的概念的分解。這些概念可能直接適用于某些目的。例如,與道路相聯系的概念在推理兩點之間的導航時是有用的。然而,在其他情況下,這些概念可能需要調整或與其他概念相結合。例如,如果一條道路被指定為 "危險區域",那么這個區域的概念可能會超出道路的邊界,延伸到周圍的地形。
本文介紹了在卡勒獎學金第一年內進行的研究,研究如何自主控制檢查平臺向故障平臺行駛以完成檢查相關任務。這項研究的目的是開發一個有限時間的相對位置控制框架,使檢查衛星能夠安全地接近發生故障的平臺,因為平臺的通信能力受到阻礙,導致其在接近過程中根本無法通信。故障平臺導致獨特的挑戰,即平臺的狀態被認為是先驗未知的,檢查器可能無法從故障平臺提供的準確和連續的信息中受益;故障平臺也可能受到機動和干擾。
在該獎學金的第一期內,使用 MATLAB 和 Simulink 開發了仿真軟件,以演示檢查平臺與故障平臺執行會合操作。首先引入基于視線的相對運動模型,直接使用導航信息,然后以自適應非奇異終端滑模控制器的形式開發魯棒控制框架,以確保閉環系統穩定并保證有限時間收斂到所需的狀態。然后在最終討論未來的工作和目標之前展示和討論模擬結果。