摘要 文章探討了大模型作為人工智能技術的前沿應用之一,在軍事領域具有廣泛的應用前景,包括指揮控制、情報分析、戰術訓練等多個方面。然而,大模型的應用也面臨著諸多挑戰和安全風險,如計算資源需求、模型解釋性、數據安全性等方面的問題。為了充分發揮大模型在軍事領域的潛力,文章提出了一系列建議,包括加強技術創新、提升計算資源支持、保障數據安全、加強模型解釋性、應對安全風險等方面的措施。 關鍵詞 大模型,人工智能,軍事應用,指揮控制
0 引言 當今迅速發展的科技時代,人工智能(AI)技術正以前所未有的速度改變著我們的生活和工作方式。其中,大模型(Large Language Model,LLM)作為人工智能技術的重要代表之一,已經在各個領域展現出了驚人的應用潛力。在軍事領域,大模型所蘊含的強大計算能力、大規模數據處理能力和智能決策能力引發了人們對其在戰爭模擬、情報分析、戰場指揮等方面的廣泛關注[1-4]。 大模型[5-6]通常指的是擁有數億甚至數十億參數的深度學習模型,其可以通過學習大量的數據來提取特征,從而實現對復雜問題的建模和預測。隨著軍事技術的不斷發展和戰爭形態的日新月異,如何有效利用大模型技術來增強軍事力量、提高戰爭效率、保障國家安全,成為當前軍事領域面臨的重大挑戰 要課題之一。大模型的應用可以極大地提高情報分析的準確性和效率,輔助指揮員進行決策,提高指揮控制的智能化水平,同時也可以用于武器系統的目標識別、路徑規劃等領域,提高武器系統的性能。 本文將首先介紹大模型大模型的概念、特點,其次介紹大模型在軍事領域中的具體應用、情報分析、指揮控制、武器系統等方面,接著分析大模型在軍事領域應用的挑戰,如數據安全、算法偏見等,探討我國在這一領域的現狀和未來發展方向,最后總結全文并展望未來。
摘要 規劃與調度問題是在一定周期內完成資源與任務最優配置的過程,人工智能技術在此領域取得許多重要進展。 大語言模型作為生成式人工智能的代表,在規劃與調度領域同樣展現出強大能力。將規劃與調度劃分為用戶需求分析、方案生成、場景建模、優化算法設計4個階段,探討了大語言模型技術在每個階段的應用,并構思一套完整的以大語言模型技術構建的求解框架,以及這些技術與框架如何在各階段發揮效用。這些技術在解決更大規模、更復雜的問題具有潛在發展空間,并展望了結合大語言模型的研究趨勢。 //www.jc2.org.cn/CN/abstract/abstract703.shtml
摘 要 隨著大語言模型技術的快速發展,其在網絡空間認知域作戰中的應用展現出巨大潛力。基于大語言模型的發展歷程和獨 特優勢,聚焦于網絡空間認知戰領域,從態勢感知、態勢認知、鑒定識別和信息作戰4個方面梳理了大語言模型關鍵技術路線,并 詳細分析了將其應用在網絡空間認知戰中的具體方案及未來挑戰,為我國在該新興領域取得新質戰斗力提供理論和技術支持。 關鍵詞 大語言模型,網絡空間,認知戰,技術與挑戰 《孫子兵法》云:“不戰而屈人之兵”,從作戰效率 和作戰效果而言,這是一種費效比極佳、“善之善 者”的作戰方案。在現代戰爭中,網絡空間認知域作 戰構成了一個多維度戰略框架,通過融合物理領域 的行動、信息領域的利用和認知領域的防御與攻擊, 旨在在網絡空間奪取敵人的意志、信念、心理和思 維主導權。網絡空間認知域作戰方式融合了傳統的 輿論戰、心理戰、法律戰,以及政治戰、經濟戰、文 化戰等多種戰術手段,形成了一個綜合性的作戰體 系,具有“全天候、不宣而戰”的特點,極大程度上助 力實現“不戰而勝”的戰略目標,對我軍新型戰斗力 的塑造起到了關鍵作用。 網絡空間的認知戰是利用先進的網絡信息技術 和傳播媒介,在現實物理戰場之外構建的思想認識、 公共輿論和意識形態的斗爭領域。這種戰斗形式通 過主導和影響公眾的情感認同和認知,爭取主導權 和話語權,目的是引導事件的發展至有利于本國利 益的方向。在網絡空間認知戰中,一方面充分利用 算法和數字智能的優勢,以實現對公眾認知的操縱; 另一方面,基于分布式協同控制技術進行智能技術 賦能,通過網絡實現作戰資源的協調、戰場態勢的 感知和上下級指令共享,進而達成分布式的智能化 作戰,實現自主決策和協同行動。各個國家對于未 來戰爭作戰力量的部署都向著動態/分布式作戰體系 發展[1] 。在認知戰領域,隨著大語言模型(large lan? guage models,LLMs)的進步,特別是通過內容創建和 虛假信息活動執行過程的自動化,可以實現在態勢 感知和態勢認知的基礎上,由識別虛假信息和生成 虛假信息兩方面協同控制戰場局勢,實現分布式體 系部署,為網絡空間認知戰的發展提供了更多的可能性,使整個網絡空間認知戰的作戰方式更加靈活。 LLMs基于機器學習技術,借助其強大的生成能 力和理解能力,能夠被用來為認知層面的攻擊提供 支持[2] ,也使得生成面向特定語境的高復雜度的信息 成為可能。這些信息能夠更深刻地觸動目標群體, 同時使得影響活動更不易被察覺和消除。不僅為更 多不同類型的行為者發起虛假信息宣傳活動打開了 大門,也為覆蓋大量受眾的高度可擴展的宣傳活動 創造了潛力。
摘 要:在自然語言處理和計算機視覺領域取得顛覆性應用的生成式模型正成為數智化的新型技術基座,是未來驅動飛 行器技術智能化發展的重要引擎。本文綜述了生成式模型賦能飛行器技術應用進展情況。首先,總結了生成式模型架構 的發展歷程,詳細介紹了變分自編碼器、生成對抗網絡、擴散模型、Transformer等基本原理架構和改進方向。其次,歸 納了生成式模型在飛行器空氣動力學、航跡預測和目標檢測等領域的典型應用和變革情況;關注了參數化建模、氣動預 測模型、反設計等飛行器空氣動力設計關鍵技術的發展趨勢;探討了實時航跡預測、完整航跡預測、協同航跡預測和預 測誤差補償的智能實現方法;從現有目標檢測方法改進角度分析了生成式模型在多尺度融合、超分辨率增強和數據增強 中的作用。最后,從模型方法和應用場景拓展角度展望了生成式模型賦能智能飛行器技術未來的研究方向,針對構建可 解釋的通用大模型和推動垂直領域應用等方面提出了發展建議。 關鍵詞:生成式人工智能;飛行器技術;空氣動力設計;航跡預測;目標檢測
摘 要:無人集群系統是當前人工智能和機器人領域備受關注的研究熱點,已在多個領域展現出廣闊的應用前景。 對無人集群系統進行了深入綜述和分析,著重探討了協同決策和博弈控制兩個關鍵方面,旨在通過智能體之間的信 息共享和協作,提高系統效率,解決在智能體之間可能出現的利益沖突和決策問題。首先,對一些基本概念進行了 明確闡述,包括智能體、集群智能和無人集群系統,有助于讀者建立對這一領域的基本理解。隨后,介紹了協同與博 弈控制數學模型、集群協同與博弈決策、集群協同控制方法、集群博弈控制方法等算法,著重強調了協同決策和博弈 控制的理論基礎,以及它們如何應用于無人集群系統中,從而提高系統的整體性能。接下來,列舉了集群協同與博 弈在多個領域的一些典型應用案例,包括智能交通、無人機編隊、物流配送和軍事領域。這些實際案例展示了該技 術的廣泛應用領域,以及它對提高效率和解決復雜問題的潛力。最后,討論了未來研究方向和挑戰,包括對新技術 和方法的需求,以應對不斷發展的需求和問題,以及如何進一步推動無人集群系統的發展。本文為無人集群系統的 進一步發展提供指導和參考,以推動該領域的發展和創新,為未來的科學和技術進步做出了一定貢獻。
關鍵詞:無人集群系統(USS);智能決策;博弈控制;協同控制;強化學習(RL)
摘要: 大模型以強大的自然語言理解、邏輯推理和內容生成等能力,為軍事智能發展帶來了前所未有的機遇和挑 戰。本文梳理了大語言模型的架構建模、適配微調、提示學習等技術,以及典型多模態大模型技術的發展現狀, 深度分析了國內外主流大模型軍事應用平臺特點,設計了大模型軍事應用的典型任務場景和能力需求,探討了 大模型技術軍事應用面臨的挑戰,展望了軍事領域大模型應用的共性關鍵技術發展,以期為提升基于大模型技 術的重大軍事應用設計與實戰研究提供參考。
關鍵詞:大模型;軍事應用;指揮控制;軍事智能;人在回路
摘要:為全面、客觀地評估人工智能技術發展對軍事變革的影響,進行多視角綜合研究。通過對時代演進、技 術創新和實戰應用全面審視人工智能對軍事變革的影響,力圖全面客觀地分析人工智能在引領軍事變革過程中發揮 的作用。結果表明,該研究為促進軍事領域人工智能的建設發展提供理論參考。 關鍵詞:人工智能;戰爭形態演進;通用技術創新;俄烏沖突
軍事技術的進步與創新在歷史上每一次軍事變 革中都發揮了重要作用,作為特殊的武裝集團,軍 隊的作戰規模、作戰方式和指揮控制隨著不同時代 戰爭形勢的變化而不斷調整更新。根據相關研究, 每當軍事技術出現革命性變化時,軍隊結構、作戰 理念和戰爭形態也會隨之相應變革,并直接影響軍 事沖突的方式。軍事技術創新與軍事變革之間存在 著密不可分的內在聯系。綜觀人類戰爭史,從火藥 的發明到信息技術的應用,先進的軍事技術與裝備 的出現都對作戰方式和軍隊組織產生過深遠影響; 因此,要準確預測未來戰爭的面貌,必須密切關注 軍事技術發展的前沿與趨勢,以確保軍事力量現代 化建設與作戰理念的先進性。 當前,隨著人工智能技術的快速發展,軍事領 域正在經歷前所未有的變革。人工智能技術在自動 化武器系統、無人機、輔助決策等軍事應用方面取 得長足進展,被美國、俄羅斯等軍事強國視為改變 未來戰爭形態的關鍵技術之一[1]。然而,人工智能 技術發展與應用還處在起步階段,其對軍事領域的 影響機理與作用路徑尚不明確,相關研究多停留在 理論探討層面,缺乏系統性的實證分析。為全面、 客觀地評估人工智能技術發展對軍事變革的影響, 有必要從多個視角進行研究,綜合考量戰爭形態演 進規律、通用技術發展理論以及實戰案例觀察,以 提出科學合理的研究建議。基于此,筆者以人工智 能技術在軍事領域的應用為研究對象,從戰爭形態 演進、俄烏沖突應用和通用技術發展 3 個視角對其 影響機理進行全面研究。
摘要—多模態情感計算(MAC)由于其在人類行為和意圖分析中的廣泛應用,尤其是在以文本為主導的多模態情感計算領域中,受到了越來越多的關注。本綜述從自然語言處理(NLP)視角出發,介紹了多模態情感計算的最新趨勢,涵蓋四個熱門任務:多模態情感分析、多模態對話情感識別、多模態基于方面的情感分析以及多模態多標簽情感識別。本綜述的目標是探索當前多模態情感研究的現狀,識別發展趨勢,突出不同任務之間的相似性和差異性,并為多模態情感計算在NLP視角下的最新進展提供全面報告。本綜述涵蓋了任務的形式化,概述了相關研究工作,描述了基準數據集,并詳細介紹了每個任務的評估指標。此外,本文簡要討論了涉及面部表情、聲學信號、生理信號和情感原因的多模態情感計算研究。我們還討論了多模態情感計算中的技術方法、挑戰及未來發展方向。為了支持進一步的研究,我們發布了一個匯集了多模態情感計算相關工作的資源庫,提供了詳細的資源和參考文獻,供研究社區使用。
情感計算結合了計算機科學、心理學和認知科學的專業知識,其目標是賦予機器識別、解釋和模擬人類情感的能力【1】–【6】。當今世界充滿了各種模態——我們通過視覺感知物體,通過聽覺感受聲音,通過觸覺感受物體的質地,通過嗅覺聞到氣味,等等。模態是指體驗的感知或發生方式,通常與視覺或觸覺等感官模態相關,這些模態對交流和感知至關重要。在多個領域的多模態學習取得重大進展【7】【8】后,多模態情感計算的進展加速并受到越來越多的關注。
多模態情感計算旨在開發能夠在多種模態下解釋和推理情感或情緒狀態的模型。在其早期階段,情感計算的研究主要集中在單一模態任務上,分別研究基于文本、音頻和視覺的情感計算。例如,D-MILN【9】是一個文本情感分類模型,而工作【10】利用訓練在原始音頻上的雙向長短期記憶(BiLSTM)模型預測群體反應的平均情感。如今,情感分析已廣泛應用于各種模態中,用于市場研究、品牌監測、客戶服務分析和社交媒體監控等應用。多媒體技術的最新進展【11】–【14】拓寬了信息傳播的渠道,新聞、微博等社交媒體平臺以及視頻內容的涌現將文本(口語特征)、聲學(節奏、音高)和視覺(面部屬性)信息整合起來,用于全面分析人類情感。例如,Xu等人【15】將圖像模態數據引入傳統的基于文本的方面級情感分析,創建了多模態基于方面的情感分析新任務。同樣,Wang等人【16】將文本情感原因對提取擴展到多模態對話環境中,利用多模態信號(文本、音頻和視頻)增強模型理解情感及其原因的能力。
多模態情感計算任務與機器學習中的多個學習范式密切相關,包括遷移學習【17】–【19】、多模態學習【20】【21】、多任務學習【22】–【24】和語義理解【25】【26】。在遷移學習方面,它使得在一個領域訓練的情感分析模型能夠適應其他領域的有效表現。通過在目標領域有限的數據上微調預訓練模型,這些模型可以遷移到新領域,從而提升其在多模態情感計算任務中的表現。在多模態學習中,跨模態注意力動態對齊并聚焦于來自不同模態的相關信息,通過突出關鍵特征及其交互來增強模型捕捉情感的能力。在多任務學習中,跨情感計算任務和模態的共享表示通過從文本、音頻和視頻中捕捉共同的情感相關特征來提升表現。 最近,多模態學習的研究通過在大規模多模態數據集上預訓練多模態模型,進一步提升了下游任務的性能,如多模態情感分析【27】–【30】。隨著預訓練模型規模的擴大,參數高效的遷移學習方法如適配器【31】、提示【32】、指令微調【33】和上下文學習【34】【35】等不斷涌現。越來越多的多模態情感計算研究利用這些參數高效的遷移學習方法,將預訓練模型(如單模態預訓練模型或多模態預訓練模型)的知識遷移到下游情感任務中,通過進一步微調預訓練模型來提升模型性能。例如,Zou等人【36】設計了一個多模態提示Transformer(MPT)用于跨模態信息融合。UniMSE【37】提出了一種基于適配器的模態融合方法,它將聲學和視覺信號注入T5模型中,與多層次的文本信息進行融合。
多模態情感計算涵蓋了情感分析、觀點挖掘和情感識別等任務,使用的模態包括文本、音頻、圖像、視頻、生理信號和觸覺反饋。本綜述主要關注三種關鍵模態:自然語言、視覺信號和聲音信號。我們在本綜述中突出了四個主要任務:多模態情感分析(MSA)、多模態對話中的情感識別(MERC)、多模態基于方面的情感分析(MABSA)和多模態多標簽情感識別(MMER)。多模態情感計算領域已有大量研究,且已有多篇綜述【14】【38】–【40】發表。然而,這些綜述主要集中于特定的情感計算任務或單一模態,忽略了跨多任務的多模態情感計算的總體概況,以及這些任務之間的一致性和差異性。
本綜述的目標有兩點。首先,旨在為初學者提供多模態情感計算的全面概述,探索情感分析中的深度學習,詳細介紹任務、輸入、輸出及相關數據集。其次,為研究人員提供反思過去發展、探索未來趨勢的視角,并研究多模態情感分析和情感識別領域的技術方法、挑戰及研究方向。
綜述的結構
第III節概述了多模態情感任務的任務形式化及應用場景。第IV節介紹了特征提取方法和最近的多模態預訓練模型(如CLIP、BLIP、BLIP2)。第V節從多模態融合和多模態對齊兩個角度分析了多模態情感研究,并簡要總結了用于進一步微調預訓練模型的參數高效遷移方法。第VI節回顧了關于MSA、MERC、MABSA和MMER的文獻,重點討論了多任務學習、預訓練模型、增強知識和上下文信息。此外,第VII節總結了多模態數據集,第VIII節涵蓋了每個多模態情感計算任務的評估指標。在回顧多模態情感計算工作后,第IX節簡要回顧了基于面部表情、聲學信號、生理信號和情感原因的多模態情感計算工作,突出其一致性、差異性及其最新趨勢。第X節從三個方面展望了未來工作:多模態情感計算任務的統一、外部知識的引入以及較少研究的模態情感計算。最后,第XI節總結了本綜述及其對多模態情感計算社區的貢獻。
多模態情感計算中的多模態學習
多模態學習涉及從不同模態中學習表示。通常,多模態模型應首先基于語義對模態進行對齊,然后再融合多模態信號。在對齊后,模型將多個模態組合成一個表示向量。
隨著預訓練模型規模的擴大,出現了諸如適配器【31】、提示【32】、指令微調【33】和上下文學習【34】【35】等參數高效的遷移學習方法。在這種范式下,預訓練的語言模型(LMs)不再通過目標工程適應下游任務,而是通過提示、指令微調和上下文學習,將下游任務重新格式化,使其更像原始LM訓練期間解決的任務。例如,在視覺語言模型(VLMs)中,像GPT-4V【65】和Flamingo【67】的提示使用,使模型能夠基于視覺和文本輸入的結合來解釋和生成輸出。與提示不同,指令微調屬于提示學習范式。此外,像InstructBLIP【70】和FLAN【72】這樣的模型表明,指令微調不僅提高了模型對指令的遵循性,還增強了其跨任務的泛化能力。在多模態情感計算領域,研究人員可以利用這些參數高效的遷移學習方法(例如適配器、提示和指令微調),將預訓練模型(例如單模態預訓練模型或多模態預訓練模型)的知識遷移到下游情感任務中,并通過情感數據集進一步微調預訓練模型。鑒于多模態情感計算涉及多模態學習,因此我們從多模態融合和多模態對齊的角度分析多模態情感計算的相關工作,如圖1所示。
多模態信號是異質的,來源于各種信息源,因此將多模態信號整合為一個表示至關重要。Tasi等人【74】根據融合階段將多模態融合總結為早期融合、晚期融合和中間融合。早期融合在模型處理之前,將來自不同模態的特征在輸入級別進行組合。晚期融合則通過單獨的子網絡分別處理來自不同模態的特征,并在做出最終決策之前的晚期階段將這些子網絡的輸出進行組合。晚期融合使用單模態的決策值,并通過如平均【121】、投票方案【122】、基于通道噪聲的加權【123】和信號方差【124】等機制將它們結合起來,或者通過學習模型【6】【125】進行融合。這兩種融合策略面臨一些問題。例如,特征級別的早期融合在融合操作后可能低估模態內的動態,而決策級別的晚期融合在融合操作之前可能難以捕捉模態間的動態。不同于前兩種方法的地方在于,中間融合是在模型學習器的中間層結合來自不同模態的特征,允許模態在不同的處理階段進行更多的交互,從而可能產生更豐富的表示【37】【126】【127】。基于這些融合策略,我們從三個方面回顧了多模態融合:跨模態學習、模態一致性與差異性、多階段模態融合。圖2展示了模態融合的三個方面。
跨模態學習關注的是通過引入模態間的依賴關系和交互來實現更好的模態融合。早期的多模態融合工作【73】主要在特征空間中進行幾何操作,以融合多種模態。最近,跨模態學習的常見方式是引入基于注意力的學習方法來建模模態間和模態內的交互。例如,MuLT【74】提出了多模態Transformer,用于學習模態間的交互。Chen等人【75】通過三模態協同交互增強了模態內和模態間的特征,并統一了三種模態的特性(跨模態)。楊等人【76】提出了跨模態BERT(CM-BERT),旨在基于預訓練的BERT模型對文本和音頻模態的交互進行建模。Lin等人【77】探討了模態內和模態間表示的復雜關系,用于情感提取。最近,Tang等人【78】提出了多模態動態增強模塊,用于捕捉模態內的情感上下文,減少輔助模態的模態內冗余。Huang等人【79】提出了一個基于跨模態注意力的文本中心融合網絡(TeFNA),這個多模態融合網絡利用跨模態注意力建模未對齊的多模態時間信息。
在情感識別領域,CMCF-SRNet【80】是一個跨模態上下文融合和語義精煉網絡,包含一個跨模態局部約束Transformer和基于圖的語義精煉Transformer,旨在探索話語間的多模態交互和依賴關系。Shi等人【81】提出了一個基于注意力的相關性感知多模態融合框架MultiEMO,該框架基于雙向多頭跨注意力層捕捉文本、音頻和視覺模態間的映射關系。總之,跨模態學習主要關注模態間關系的建模。
模態一致性是指對于同一樣本,不同模態之間共享的特征空間,而模態差異性則突出每種模態提供的獨特信息。大多數多模態融合方法將表示分為模態不變(一致性)和模態特定(差異性)兩個組成部分。模態一致性有助于處理缺失模態,而模態差異性則利用每個模態的互補信息來改進整體數據理解。例如,幾項研究【86】【87】通過對比學習探索了模態一致性與差異性的學習。Han等人【85】通過最大化模態間及模態內的互信息來探索模態一致性。另一項研究【86】提出了一個混合對比學習框架,該框架同時進行模態內/模態間對比學習和半對比學習,建模跨模態交互,保持類間關系,并減少模態差距。此外,Zheng等人【87】將模態對之間的互信息最大化與輸入數據和相應特征之間的互信息最小化相結合。該方法旨在提取模態不變且任務相關的信息。模態一致性也可以被視為將多種模態投射到共同潛在空間(模態不變表示)的過程,而模態差異性則指將模態投射到模態特定的表示空間。例如,Hazarika等人【88】提出了一種方法,將每種模態投射到模態不變和模態特定的空間中。他們實現了一個解碼器,通過模態不變和模態特定特征來重建原始模態表示。AMuSE【84】提出了一個多模態注意力網絡,通過聯合學習模式特定的外周和中央網絡,捕捉不同層次空間抽象下的跨模態交互。對于細粒度的情感分析,Xiao等人【89】提出了CoolNet,以提高視覺語言模型在無縫整合視覺和語言信息方面的性能。Zhang等人【90】通過探索模態一致性,提出了一個基于融合判別注意力網絡的方面級情感分類模型。
多階段多模態融合【128】【129】指的是將從多個階段或多個尺度提取的模態信息結合起來,以融合模態表示。Li等人【94】設計了一個兩階段對比學習任務,學習相同情感類別數據的相似特征,并為不同情感類別的數據學習可區分的特征。HFFN【95】將多模態融合過程分為分解、征服和組合三個部分,在每個局部塊學習局部交互,并通過跨局部交互傳遞信息來探索全局交互。與HFFN的工作不同,Li等人【96】對齊并融合了文本和圖像的token級特征,設計了基于標簽的對比學習和基于數據的對比學習,以捕捉多模態數據中與情感相關的共同特征。一些工作【97】將融合過程分解為多個階段,每個階段專注于部分多模態信號,以實現更專門和有效的融合。此外,CTFN【130】提出了一種新的特征融合策略,按照層次化的方式進行,首先兩兩融合模態,然后再融合三種模態。此外,在多個層次的模態融合方面也取得了進展,例如,Li等人【99】提出了一種基于多層次相關性挖掘和自監督多任務學習的多模態情感分析方法,Peng等人【100】提出了一種細粒度模態標簽的多階段網絡(FmlMSN),利用來自文本、音頻、圖像及其組合的七種情感標簽,在不同粒度上進行信息整合。研究人員通常專注于模型決策前的尺度級模態對齊和模態融合。Sharafi等人【93】提出了一種新的融合方法,利用不同的尺度進行多模態情感識別。
多模態對齊涉及在融合多模態數據之前對模態語義進行同步。一個關鍵挑戰是處理缺失模態的情況,例如由于攝像頭關閉、用戶沉默或設備故障導致語音和文本同時缺失。由于始終擁有所有模態的假設在現實中通常不切實際,因此多模態對齊必須解決這些缺失。此外,它還涉及通過語義對齊來對齊圖像、文本和音頻中的對象。因此,我們從處理缺失模態和實現語義對齊的角度討論多模態對齊。圖3展示了多模態對齊的示意圖。
在實際場景中,數據收集有時會由于不可預見的事件同時丟失某些模態。雖然多模態情感計算通常假設所有模態都可用,但這一假設在實踐中經常失敗,這可能會導致在缺少某些模態時,模態融合和對齊模型出現問題。我們將現有的處理缺失模態的方法分為四類。第一類是數據增強方法,通過隨機刪除輸入來模擬缺失模態的情況。Parthasarathy等人【107】提出了一種策略,在訓練過程中隨機刪除視頻輸入的剪輯或幀,模擬現實世界場景。Wang等人【108】通過訓練情感識別模型,迭代性地進行數據增強,處理話語級模態缺失問題。第二類基于生成方法,直接預測給定可用模態的缺失模態【131】。例如,Zhao等人【106】提出了缺失模態想象網絡(MMIN),在不同缺失模態條件下,根據可用模態預測任何缺失模態的表示,以應對不確定的缺失模態問題。Zeng等人【109】提出了基于集成的缺失模態重建(EMMR)網絡,以檢測并恢復關鍵缺失模態的語義特征。Yuan等人【110】提出了一種基于Transformer的特征重建網絡(TFR-Net),該網絡通過增強模型在非對齊模態序列中隨機缺失的魯棒性。Luo等人【111】提出了多模態重建與對齊網絡(MRAN),專門處理缺失模態問題,尤其是緩解文本模態缺失帶來的性能下降。
第三類旨在學習聯合多模態表示,這些表示能夠包含基于組合的視覺和文本輸入的相關信息。例如,Ma等人【133】提出了一個統一的深度學習框架,通過相關分析有效處理音視頻情感識別中的缺失標簽和缺失模態問題。Zeng等人【113】提出了一個標簽輔助Transformer編碼器網絡(TATE),用于處理不確定的缺失模態問題,該網絡設計了一個標簽編碼模塊,以覆蓋單模態和多模態缺失的情況,從而引導網絡對缺失模態的關注。Zuo等人【114】提出使用不變特征的缺失模態想象網絡(IF-MMIN),該網絡包含不變特征學習策略和基于不變特征的想象模塊(IF-IM)。通過這兩種策略,IF-MMIN能夠在預測缺失模態時緩解模態差距,從而提高多模態聯合表示的魯棒性。Zhou等人【116】在缺失一種或多種模態的情況下,提出了一種新穎的腦腫瘤分割網絡。該網絡由三個子網絡組成:一個特征增強生成器、一個相關性約束模塊和一個分割網絡。 最后一類是基于翻譯的方法。Tang等人【98】提出了耦合翻譯融合網絡(CTFN),通過耦合學習建模雙向交互,確保在缺失模態情況下的魯棒性。Liu等人【115】提出了一種基于模態翻譯的多模態情感分析模型(MTMSA),該模型對不確定的缺失模態具有魯棒性。總而言之,關于缺失模態對齊的研究集中在基于現有模態信息的缺失模態重建和學習。
語義對齊旨在找到同一樣本中多種模態之間的連接,指的是通過一種模態信息搜索另一種模態信息,反之亦然。在多模態情感分析領域,Tsai等人【74】利用跨模態和多尺度模態對齊,分別在語義層面實現模態一致性。ScaleVLAD【200】提出了一種融合模型,通過共享的局部聚合描述符向量,從文本、視頻和音頻中聚集多尺度表示,以改進未對齊的多模態情感分析。Yang等人【104】將未對齊的多模態序列數據轉換為一個具有異質節點和邊的圖,捕捉模態間和時間上的豐富交互。Lee等人【201】將音頻和基礎文本信號按相同步長分段,使得順序信號的相同時間步覆蓋信號的相同時間跨度。Zong等人【202】利用多次雙向翻譯,與傳統的翻譯方法相比,產生了雙倍的多模態融合嵌入。Wang等人【203】提出了一種基于Transformer的多模態編碼–解碼翻譯網絡,并采用了以文本為主要信息、聲音和圖像為次要信息的聯合編碼–解碼方法。Zhang等人【120】提出了一種新穎的多級對齊方法,用于彌合聲學和詞匯模態之間的差距,該方法可以有效對比實例級和原型級的關系,在潛在空間中分離多模態特征。Yu等人【204】提出了一種無監督方法,通過最小化兩種模態之間的Wasserstein距離,強迫兩種編碼器產生更合適的表示,以便最終對文本和圖像進行對齊。 Lai等人【119】提出了一種基于協方差矩陣的深度模態共享信息學習模塊,用于捕捉模態之間的共享信息。此外,我們使用了一個基于自監督學習策略的標簽生成模塊,以捕捉模態的私有信息。我們的模塊在多模態任務中是即插即用的,并且通過改變參數化,它可以調整模式之間的信息交換關系,學習特定模式之間的私有或共享信息。我們還采用了多任務學習策略,幫助模型專注于模態差異的訓練數據。為了增強模型的魯棒性,Robust-MSA【118】提出了一個交互式平臺,可視化模態噪聲的影響,以幫助研究人員提高模型能力。
多模態情感計算中的模型
在多模態情感計算領域,相關工作在技術路線發展上表現出顯著的一致性。為了更清晰地展示,我們根據多任務學習、預訓練模型、增強知識、上下文信息這四個方面對這些工作進行了分類。同時,我們簡要總結了在多模態情感分析(MSA)、多模態對話情感識別(MERC)、多模態基于方面的情感分析(MABSA)和多模態多標簽情感識別(MMER)任務中的進展。圖4總結了在這些方面的典型多模態情感計算工作,表II展示了多模態情感計算的分類。
多任務學習是在多個相關任務上同時訓練模型,通過共享信息來提升性能。損失函數結合了所有任務的損失,通過梯度下降來更新模型參數。在多模態情感計算中,多任務學習有助于區分模態不變和模態特定特征,并將與情感相關的子任務整合到統一框架中。圖5展示了多模態情感學習任務中多任務學習的范式。
在多模態情感分析領域,Self-MM【134】為單一模態生成偽標簽【205】–【207】,然后基于生成的和原始標簽共同訓練單模態和多模態表示。此外,還使用了一種模態間的翻譯框架ARGF,作為輔助任務將一種模態翻譯到另一種模態,從而規范多模態表示學習【135】。Akhtar等人【136】利用情感和情緒任務的相互依賴性來提高模型在這兩個任務上的性能。Chen等人【137】提出了一個基于視頻的跨模態輔助網絡(VCAN),該網絡由一個音頻特征映射模塊和一個跨模態選擇模塊組成,以利用輔助信息。Zheng等人【138】提出了帶有松弛重建的解耦翻譯網絡(DTN),用于捕捉期望的信息屬性,獲取統一的特征分布,并減少冗余。Zheng等人【87】結合了模態對之間的互信息最大化(MMMIE)與輸入數據和相應特征之間的互信息最小化,在單一架構中共同提取模態不變和任務相關的信息。
在多模態情感識別社區中,Zheng等人【24】提出了一個名為面部表情感知多模態多任務學習的兩階段框架(FacialMMT),該框架在統一架構中共同訓練多模態面部識別、無監督面部聚類和面部匹配,以利用幀級別的面部情感分布來幫助改進基于多任務學習的話語級情感識別。Zhang等人【208】設計了兩種多任務學習解碼器,即單級解碼器和多級解碼器,以探索其潛力。更具體地說,單級解碼器的核心是掩蔽的外模態自注意機制。Sun等人【139】設計了兩個輔助任務,以緩解模態間融合不足的問題,并引導網絡捕捉和對齊與情感相關的特征。Zhao等人【140】提出了基于Transformer的深度融合網絡(TDFNet)用于多模態情感識別,解決了上述問題。TDFNet中的多模態嵌入(ME)模塊通過使用大量無標簽數據為模型提供多模態信息的先驗知識,來緩解數據稀缺問題。Ren等人【141】提出了一種新穎的多模態對抗學習網絡(MALN),該網絡首先從上下文序列中挖掘說話者的特征,然后將其與單模態特征結合起來。Liu等人【142】提出了LGCCT,一種輕量級的門控和交叉互補Transformer,用于多模態語音情感識別。
Yang等人【144】提出了一個名為跨模態多任務Transformer(CMMT)的多任務學習框架,該框架包含兩個輔助任務,用于學習方面/情感感知的模態內表示,并引入了一個文本引導的跨模態交互模塊,以動態控制視覺信息對每個詞的模態間交互表示的貢獻。Jain等人【145】提出了一個分層多模態生成方法(AbCoRD),用于基于方面的投訴和理由檢測,將多任務問題重新表述為多模態文本生成任務。Ju等人【146】是第一個聯合執行多模態ATE(MATE)和多模態ASC(MASC)的人,并提出了一個聯合框架JML,用于基于多模態方面級情感分析(MALSA)的輔助跨模態關系檢測,以控制視覺信息的適當利用。Zou等人【36】設計了一個多模態提示Transformer(MPT)進行跨模態信息融合。同時,該工作使用了混合對比學習(HCL)策略,以優化模型處理少量標簽樣本的能力。Chen等人【82】設計了音頻模塊應比文本模塊更具表現力,并將單一模態情感表示動態融合到多模態情感表示中,提出了相應的基于規則的多模態多任務網絡(MMRBN),用于限制表示學習。
對于多模態多標簽情感識別,Ge等人【92】設計了對抗性時間掩蔽策略和對抗性參數擾動策略,以分別增強其他模態的編碼和模型的泛化能力。MER-MULTI【147】是一種標簽分布自適應方法,適應了訓練集和測試集之間的標簽分布,以消除與測試集特征不匹配的訓練樣本。Akhtar等人【209】提出了一個深度多任務學習框架,該框架聯合執行情感和情緒分析,利用兩個相關任務(即情感和情緒)的相互依賴性來提高它們各自的性能。
近年來,大語言模型(LLM)【56】【210】和多模態預訓練模型【21】【26】【211】【212】取得了顯著進展【25】【210】【213】。與非預訓練模型相比,預訓練模型包含大量轉移知識【27】【31】,可以引入到多模態表示學習中,以探索更豐富的信息。圖6展示了預訓練模型在多模態情感學習任務中的使用。
在多模態情感分析領域,Rahman等人【21】提出了一種附加到預訓練模型BERT和XLNet上的多模態適應門(MAG),該適應門允許BERT和XLNet通過生成一個基于視覺和聲學模態的偏移來接受多模態的非語言數據。UniMSE【37】是基于T5模型【57】的統一情感共享框架,該框架將非語言信號注入預訓練的Transformer模型中,以探索LLM中存儲的知識。AOBERT【148】引入了一種單流Transformer結構,將所有模態整合到一個BERT模型中。Qian等人【149】在詞級別嵌入情感信息到預訓練的多模態表示中,以便在有限的標注數據上進行進一步學習。TEASAL【150】是一個基于Transformer的語音前綴語言模型,它利用一個傳統的預訓練語言模型作為跨模態Transformer編碼器。Yu等人【151】研究了面向目標的多模態情感分類(TMSC),并提出了一個多模態BERT架構,用于多模態情感分析任務。Cheng等人【152】設置了分層參數共享和分解的共同注意機制,以便在跨注意力塊之間共享參數,從而允許多模態信號在每一層進行交互。ALMT【153】結合了一個自適應超模態學習(AHL)模塊,用于在語言特征的指導下從視覺和音頻特征中學習無關性/沖突抑制的表示。
在多模態對話情感識別領域,FacialMMT【24】是一個兩階段框架,使用RoBERTa【214】和Swin Transformer作為表示學習的主干。Qiu等人【215】采用VATT【30】分別編碼視覺、文本和音頻,并使學到的模態表示進行對齊。QAP【19】是一個量子啟發的自適應優先學習模型,采用ALBERT作為文本編碼器,并引入了量子理論(QT)以自適應地學習模態優先級。UniMSE【37】提出了一種基于預訓練模型T5的多模態融合方法,旨在通過預訓練的知識融合模態信息。GraphSmile【154】采用RoBERTa【214】逐層跟蹤多模態對話中的復雜情感線索,逐層吸收模態內和模態間的情感依賴關系,充分捕捉跨模態線索,同時有效避免融合沖突。
在多模態基于方面的情感分析研究中,Xu等人【47】首次提出了多模態基于方面的情感分析任務,并提出了一種新穎的多交互記憶網絡(MIMN),該網絡包含兩個交互記憶網絡,分別用于監督文本和視覺信息與給定方面的關聯,并學習跨模態數據之間的交互影響以及單模態數據中的自我影響。Yang等人【17】提出了一種新穎的生成多模態提示(GMP)模型,用于MABSA,該模型包含多模態編碼器模塊和N流解碼器模塊,并通過少量標注的多模態樣本執行三項MABSA相關任務。Liu等人【155】提出了一種基于視覺提示的實體相關無監督預訓練,用于MABSA。Ling等人【156】提出了一個任務特定的視覺-語言預訓練框架(VLPMABSA),這是一個統一的多模態編碼器-解碼器架構,適用于所有的預訓練和下游任務。Zhang等人【157】構建了一個動態重加權的BERT(DR-BERT),設計用于學習基于BERT的動態方面導向語義。
一些關于多模態多標簽情感識別的工作利用了預訓練模型來提高模型性能。據我們所知,TAILOR【91】是一個新穎的多模態學習框架,用于多標簽情感識別,它對多個模態之間的共性和差異進行了對抗性描繪。TAILOR通過對抗性地提取私有和共性模態表示來執行這些任務。
在機器學習和人工智能中,外部知識是指來自訓練數據集之外的信息,包括知識庫、文本語料庫、知識圖譜、預訓練模型和專家見解。整合這些知識可以提高模型的性能、泛化能力、可解釋性以及對噪聲或有限數據的魯棒性。圖7展示了在多模態情感學習任務中整合外部知識的常見方法。
在多模態情感分析研究領域,Rahmani等人【18】通過層次劃分用戶構建了自適應樹,并利用基于注意力的融合來在樹內轉移認知導向的知識。TETFN【163】是一種新穎的方法,名為文本增強Transformer融合網絡,它學習面向文本的成對跨模態映射,以獲得有效的統一多模態表示。Zhu等人【164】提出了情感知識增強的注意力融合網絡(SKEAFN),這是一個新穎的端到端融合網絡,通過整合來自外部知識庫的附加情感知識表示來增強多模態融合。
在多模態對話情感識別領域的研究中,Fu等人【166】將上下文建模、知識豐富和多模態(文本和音頻)學習集成到基于GCN的架構中。Li等人【167】提出了一種解耦的多模態蒸餾(DMD)方法,旨在通過靈活和自適應的跨模態知識蒸餾來增強每種模態的判別特征。Sun等人【168】研究了一種基于粗集理論的多模態融合Transformer網絡,通過粗集跨注意力促進了多模態信息的交互和特征引導。
在多模態基于方面的情感分析研究中,Xu等人【172】引入了外部知識,包括文本語法和跨模態關聯知識,通過知識誘導矩陣切斷文本或跨模態模態之間的無關連接。Yang等人【173】提煉了視覺情感線索,并將其與文本內容對齊,以選擇性地與文本模態中的目標方面匹配和融合。CoolNet【174】是一個跨模態的細粒度對齊和融合網絡,旨在提高視覺-語言模型在無縫整合視覺和語言信息方面的表現。
在多模態多標簽情感識別研究領域,Zheng等人【176】提出通過使用效價-喚醒(VA)空間來表示每個情感類別,以捕捉情感類別之間的相關性,并設計了一種基于VA的對比學習算法。CARAT【177】提出了基于對比的特征重建和聚合機制,用于MMER任務。具體而言,CARAT設計了一種基于重建的融合機制,通過對比學習模態分離和標簽特定特征,來更好地建模細粒度的模態與標簽之間的依賴關系。
上下文是指圍繞某個詞或短語的單詞、句子或段落,這些信息為該詞或短語賦予了特定的含義。理解上下文對于對話系統或情感分析等任務至關重要。在對話中,上下文包括之前話語的歷史,而對于新聞來說,它指的是整篇文章提供的總體描述。總的來說,上下文信息幫助機器做出更準確的預測。圖8展示了上下文信息在多模態情感學習任務中的重要性。
在多模態情感分析領域,Chauhan等人【180】采用了一個上下文感知的注意力模塊,通過編碼器-解碼器結構學習參與模態之間的模態內交互。Poria等人【181】提出了一個帶有多級多重注意的遞歸模型,以捕捉話語之間的上下文信息,并設計了一個遞歸模型來捕捉話語之間的上下文信息,引入了基于注意力的網絡,以提高上下文學習和動態特征融合的效果。
在多模態對話情感識別研究領域,Hu等人【185】有效利用了多模態依賴關系,并利用說話者信息來建模說話者之間和說話者內部的依賴關系。Zhang等人【80】提出了一個跨模態上下文融合和語義精煉網絡(CMCF-SRNet),解決了話語之間語義關系信息不足的局限性。Zhang等人【187】構建了多個特定模態的圖,以建模多模態上下文的異質性。Chen等人【188】提出了一個基于GNN的模型,該模型探索了多變量關系,并通過評估多頻信號的情感差異和共性的不同重要性來捕捉這些關系。
在多模態基于方面的情感分析研究中,Yu等人【158】提出了一種無監督的方法,該方法最小化了兩個模態之間的Wasserstein距離,強制兩個編碼器生成更適合最終提取的表示。Xu等人【192】設計并構建了一個多模態中文產品評論數據集(MCPR),以支持MABSA的研究。
MMS2S【197】是一種多模態序列到集合的模型,用于有效建模標簽依賴和模態依賴。MESGN【198】首次提出了這一任務,該模型同時建模模態到標簽和標簽到標簽的依賴關系。Zhao等人【199】提出了一個通用的多模態對話感知交互框架(MDI),用于建模對話上下文對情感識別的影響。 結論
多模態情感計算(MAC)已成為人工智能領域中的一個重要研究方向,并在理解和解釋情感方面取得了顯著進展。本文綜述了與多模態情感計算相關的多種任務,涵蓋了其研究背景、定義、相關工作、技術方法、基準數據集和評估指標。我們將多模態情感計算中的任務劃分為四類:多任務學習、預訓練模型、增強知識和上下文信息,涉及多模態情感分析(MSA)、多模態對話情感識別(MERC)、多模態基于方面的情感分析(MABSA)和多模態多標簽情感識別(MMER)。此外,我們總結了不同情感計算任務之間的一致性和差異性,并報告了多模態情感分析中固有的挑戰,探索了未來研究和發展的潛在方向。
摘要: 以大模型在材料科學中的應用為著眼點,首先綜述了大模型,介紹了大模型的基本概念、發展過程、技術分類與特點等內容;其次從通用領域大模型和垂直領域大模型兩個角度,總結了大模型的應用,列舉分析了不同種類大模型的應用場景和功能. 再次,結合材料科學領域中的具體需求研究現狀,調研并綜述了語言大模型、視覺大模型和多模態大模型在材料科學中的應用情況,以自然語言處理和計算機視覺中的具體任務為切入,參考典型應用案例,綜合提示工程策略和零樣本知識遷移學習,厘清了當前將大模型應用至材料科學的研究范式和制約因素,并利用改進SAM視覺大模型在四種材料顯微圖像數據上進行了驗證性圖像分割與關鍵結構提取實驗,結果表明SAM帶來的零樣本分割能力對于材料微結構的精準高效表征具有巨大應用潛力. 最后,提出了大模型相關技術、方法在材料科學中的未來研究機遇,從單模態到綜合性多模態的大模型研發與調優,評估了可行性及技術難點.
//115.25.60.6/article/doi/10.13374/j.issn2095-9389.2023.09.20.002
人工智能(Artificial intelligence,AI)在各領域中的廣泛應用從科研熱點、社會關切、政策支持等維度都體現出極大的研究與應用價值[1]. 隨著人工智能的土壤——數據的指數級增長以及計算能力的躍升,以深度學習為代表的突破性人工智能算法不斷涌現[2],逐漸代替傳統的機器學習和基于規則的方法,并在眾多場景下得以大范圍實際應用[3?4],如人臉識別[5]、自動駕駛[6]、文本生成[7]等. 2022年底,OpenAI公司發布ChatGPT應用并迅速進入大眾的視野[8],推出僅兩個月后月活躍用戶就已超一億,成為歷史上用戶群增長最快的消費應用. 基于語言大模型開發的人工智能產品ChatGPT被認為是人工智能技術的新突破,吸引了社會各界的重點關注,引發了國內外新一輪人工智能產品應用落地. 可以這樣說,以ChatGPT為時間起點,人工智能正式進入“大模型時代”,大模型也正在重塑各種任務并在眾多復雜的下游任務中取得了不俗的成績[9?11].
在目標檢測技術的驅動下,被賦予智能感知能力的無人機得以實現高效靈活的數據收集能力。隨著無人機 的普及與智能技術的成熟,無人機視角下的目標檢測在諸多領域中作為關鍵核心技術,具有重要的研究意義。為了 進一步促進無人機視角下目標檢測研究的發展,本文對無人機視角下的目標檢測算法進行了全面的總結,并對已有 算法進行了歸類、分析和比較。首先,介紹無人機視角下的目標檢測概念,并總結了無人機視角下目標檢測所面臨 的目標尺度、空間分布、樣本數量、類別語義以及優化目標等五大不均衡挑戰。**在介紹現有研究方法的基礎上,本 文特別整理并介紹了無人機視角下目標檢測算法在交通監控、電力巡檢、作物分析和災害救援等實際場景中的應用。**然后,重點闡述從數據增強策略、多尺度特征融合、區域聚焦策略、多任務學習、以及模型輕量化等方面來提升無 人機視角下目標檢測性能的方法,總結這些方法的優缺點并分析了其與現存挑戰之間的關聯性。之后,全面介紹基 于無人機視角的目標檢測數據集,并呈現已有算法在兩個較為常用的公共數據集上的性能評估。最后本文對無人機 視角下目標檢測技術的未來發展方向進行了展望。
0. 引言
計算機視覺技術為無人機賦予了自主感知、分 析和決策能力,而目標檢測則是提高無人機感知能 力的關鍵技術之一。無人機結合智能目標檢測技術 可充分發揮其高機動性優勢,在廣闊的空中視野中 定位感興趣目標,進而實現靈活高效的數據收集能 力。在目標檢測技術的驅動下,無人機在交通監控 (Byun 等,2021)、電力巡檢(Abdelfattah 等, 2020)、作物分析(Osco 等,2021a)和災害救援 (Bo?i?-?tuli? 等,2019)等多個領域中展現出廣闊 的應用前景。例如在交通監控領域,無人機可以空 中飛行進行偵測,不受道路限制,具有速度快、自 由度高、視野寬廣等優點。當交通事故等突發事件 發生時,無人機可以第一時間進行響應,到達現場 進行圖像采集與分析,為應急救援與管理提供及時 有效的數據支撐。在深度學習的驅動下,目標檢測 技術獲得了長足的發展,取得了諸多令人矚目的成 就。然而,大多數研究聚焦于地面視頻監控圖像的 分析,面向無人機視角圖像的目標檢測還未得到充 分的研究。目前,即使是最好的目標檢測算法,在 無人機圖像上的平均精確率也難以達到40%(Cao 等,2021)。
**無人機視角下的目標檢測之所以難,其主要原 因在于無人機圖像存在尺度變化、疏密分布、目標 數量較多且小目標占比較高等問題,特別是無人機 高分辨率圖像高計算需求與現階段低功耗芯片有 限算力之間的矛盾難以平衡。**相對于地面視角拍攝 的自然圖像,無人機視角下的廣闊視場意味著更為 復雜的場景和更加多樣的目標,在提供更為豐富的 可視化信息的同時,也帶來了更多無用噪聲的干擾。特別是無人機視角下,圖像中的目標往往因遠端拍 攝、背景遮擋或光照影響等因素檢測難度較大,需 要使用高分辨率圖像提供更多的信息以達到較好 的檢測效果。這極大地增加了目標檢測算法的計算 開銷與內存需求,特別是直接使用未經過特殊設計 的通用目標檢測算法將帶來難以承受的計算開銷 與內存需求,進一步加劇了目標檢測的難度。在實 際應用場景中,往往面臨著類似于識別車輛種類這 種細粒度分類的問題,這些相似目標給模型正確識 別目標帶來了巨大的挑戰。此外,受限于現實世界 中的目標數量,無人機視角下某些類別的樣本數量 往往極為有限,這種數據不均衡的狀況也對模型的 學習能力提出了更高的要求。因此,緊密地結合智能目標檢測技術,針對無 人機圖像的特性設計行之有效的方法,促使模型學 習理解無人機視角下的視覺數據,對于無人機在實 際場景中充分發揮其效用是至關重要的。無人機視 角下的目標檢測在應用廣泛的同時面臨著諸多挑 戰,具有深刻的現實意義與重要的研究意義。對無 人機視角下的目標檢測展開研究將有助于推動目 標檢測領域的進一步發展,增強目標檢測在面對真 實場景時的應用能力。
目標檢測作為計算機視覺領域的基礎研究,已 有學者對此進行研究與總結,并發表許多優秀的綜 述。Zou等人(2019)梳理了400多篇關于目標檢測 技術發展的論文,系統而全面地展現了目標檢測領 域。Oksuz等人(2020)則從目標檢測中存在的類別 不平衡、尺度不平衡、空間不平衡以及優化目標不 平衡等四大不平衡問題出發,對現有的目標檢測算 法進行了深入的總結。Chen等人(2020)則從小目 標四大基礎方法的角度出發,總結并分析了小目標 檢測的相關優化思路。曹家樂等人(2022)回顧并 總結了基于單目相機的視覺目標檢測方法,并對比 介紹了單目目標檢測和雙目目標檢測的國內外研 究進展情況。然而,以上綜述對于無人機視角下目 標檢測的關注不夠,未能系統地梳理無人機視角下 的目標檢測方法和面臨的挑戰。 **聚焦到無人機視角下的目標檢測,Mittal等人 (2020)關注低空無人機數據集,評估并總結了當 前流行的目標檢測算法,但是局限于簡單的性能對 比,沒有深入的總結分析。**Sambolek等人(2020) 介紹了在搜索和救援行動中使用無人機的可能性, 并提供了在無人機圖像中檢測相關人員的方法概 述。Srivastava等人(2021)則關注無人機圖像的車 輛檢測,從提高精度和減少計算開銷兩個方面回顧 了這些工作。Bouguettaya等人(2021)則關注于無 人機視角下的車輛檢測應用,總結并介紹了多種網 絡結構對于改善車輛檢測的貢獻。江波等人(2021) 對常見的航空影像數據集進行了梳理,并對近期的 無人機目標檢測研究進行了歸納和分析。楊浩然等 人(2022a)則對目標檢測相關算法進行了簡單的優 缺點分析。然而,這些綜述對于無人機視角下面臨 的挑戰總結不夠系統,算法方面的趨勢總結較為薄 弱,而且對于目標檢測算法的實際應用闡述也較少。
與以往關注通用領域的目標檢測綜述或僅關 注于無人機相關的特定應用場景下的綜述不同,**本 文著重于對無人機視角下的目標檢測這一意義重大且極具挑戰性的研究領域進行系統且深入的分 析與總結。**本文首先簡要闡述無人機視角下目標檢 測的重要研究意義,然后將對無人機視角下目標檢 測領域中存在的挑戰進行系統的歸納和總結,隨之 將介紹并分析無人機視角下的目標檢測優化思路, 包括數據增強、多尺度特征融合、區域聚焦策略、 多任務學習、模型輕量化以及其他優化策略等。本 文將特別展示無人機視角下目標檢測算法的應用, 闡明該研究的實際意義。此外,本文將介紹無人機 視角下適用于檢測任務的相關數據集,并在常用的 數據集上分析對比現有算法的檢測性能。最后,對 本文內容進行簡要的總結,并討論無人機視角下的 目標檢測未來可能的研究方向和發展趨勢。
摘要 隨著深度學習算法在圖像分割領域的成功應用,在圖像實例分割方向上涌現出一大批優秀的算法架構.這些架構在分割效果、運行速度等方面都超越了傳統方法.本文圍繞圖像實例分割技術的最新研究進展,對現階段經典網絡架構和前沿網絡架構進行梳理總結,結合常用數據集和權威評價指標對各個架構的分割效果進行比較和分析.最后,對目前圖像實例分割技術面臨的挑戰以及可能的發展趨勢進行了展望.