由于軍事戰場日益復雜,國防部門正在尋找最先進的解決方案,為操作人員提供工具,以實現比對手更快和更有效的決策過程。這些工具通常被稱為決策支持系統(DSS),在過去幾十年里一直在使用。人工智能技術通常被應用在決策支持系統中,以確保與個人行為相比,錯誤率更低,決策更快。在決策支持系統中,這種實現的有效性在很大程度上取決于操作者對人工智能提供的建議的理解能力,以及由此產生的信任。可解釋的人工智能(XAI)允許用戶通過在DSS的用戶界面(UI)中可視化的過程來了解系統是如何得出關于某個決策的建議的。然而,這也帶來了一個固有的問題,即:在用戶超載、降低操作者的決策性能之前,應該向用戶展示多少過程?
在這項研究中,一個人工智能驅動的應用程序已經被開發出來,它可以幫助操作員規劃一個軍用直升機任務。在這個場景中,操作者需要為直升機上的士兵找到兩個合適的著陸區域(LZs),以便接近一個小城市地區的恐怖分子營地。DSS支持選擇合適的降落區域的過程,考慮到各個方面,例如到目標區域的距離、光斑大小、表面類型和坡度。為了評估達到信任和任務績效的最佳水平需要多少透明度,我們定義了四個可解釋性級別,每個級別都增加了信息透明度和控制級別。對于這四個關卡中的每一個,都需要在測試階段設計、開發和評估獨特的ui。結果表明,第三和第四UI設計的性能有所提高(決策制定的時間更少,LZ決策的正確百分比更高,提交的LZ反映了良好的人機交互,感知和實際得分之間的偏差較低),這比前兩層提供了更多的信息和更多的互動可能性。結果還表明,用戶更喜歡個性化他們的UI,以滿足他們的角色、體驗水平和個人偏好。
本研究論文使用問題解決框架,研究了美國武器系統如何在采購生命周期的操作和支持階段陷入持續的陳舊和停滯循環,并提供了解決這種情況的方案。一些美國武器系統保持著它們最初在幾十年前投入使用時的能力。關鍵的發現,如厭惡風險的文化、系統要求低于計劃目標備忘錄的切割線、對財務指導的誤解、嚴格的維持法規、繁瑣的采購流程以及高于必要的決策,都被認為是導致根本問題的原因。這篇研究論文提出了幾個解決方案,解決了部分包容性的問題。對解決方案的整體可行性、對作戰人員的好處以及與實施相關的任何潛在風險進行了權衡。最后的建議包括鞏固和利用財務條例對作戰人員的好處,允許增加運營和維護資金的靈活性,允許在F3I重新設計中增加靈活性和性能,盡可能利用領先的商業技術,以及改變維持的心態,從保持準備狀態到保持相關性。結論強調,美國空軍在技術上落后于近似對手,高級領導人必須像對手一樣思考,以確保美國的法規不會抑制空軍比敵人更快地穿越OODA循環的能力。
自朝鮮戰爭以來,美國在每次交戰中都保持著空中優勢;然而,一些跡象表明,空中優勢在未來的沖突中可能不再有保障。據報道,他們最新的S-500防空導彈系統成功擊中了近300英里外的目標。中國在過去十年中對其軍事進行了大量投資,現在已經達到了一個關鍵的自信點。
這個問題可能源于美國如何運作和資助其軍事項目。美國空軍將 "維持 "定義為維持一個武器系統的現有基線能力。任何改進武器系統超過其現有性能閾值的手段都被認為是開發工程的努力,需要從研究開發測試和評估(RDT&E)撥款中獲得資金。許多系統一旦投入使用就不會獲得RDT&E資金,通常在其生命周期的剩余時間內由運營和維護(O&M)撥款資助。由于對現行財務條例的嚴格解釋,財務經理通常會拒絕使用運營和維護資金來提高系統能力和應對不斷變化的威脅的創造性努力。這使得綜合產品小組(IPTs)沒有什么選擇,只能對他們的武器系統進行意義不大的改變,以保持它們在操作上的相關性。
美國不僅在做錯誤的財務決定,而且在做這些決定時也很緩慢。在過去的幾十年里,采購時間周期已經增加。據美國空軍高級領導人目前的估計,從授予合同到投入使用一個系統的時間超過10年。美國的對手在采購周期上的運作速度至少是其兩倍。在過去的二十年里,一些主要的國防采購項目(MDAP)已經被取消。事實上,國防部(DOD)已經在那些永遠不會投入使用的項目上花費了超過460億美元。
為了解決這個問題,新的倡議,如第804條快速采購和破解國防部5000號文件正受到相當大的關注。雖然它們不能解決撥款問題,但它們試圖縮短采購時間周期。在幾十年來成本成為采購決策的主要因素之后,速度現在被強調為主要考慮因素。使用問題/解決方案框架,本文將研究美國武器系統是如何陷入陳舊和停滯的循環中的,以及可以實施哪些解決方案來有效維持美國武器系統。
本文將首先闡明這個問題,描述綜合維持活動組(CSAG)和空軍維持中心(AFSC)內的幾個低效的供應鏈政策。然后,它將討論系統過時和對商業技術的依賴,接著是國防部緩慢的采購過程。問題部分最后將詳細分析當前的撥款限制以及美國空軍的幾個文化問題。
解決方案部分將首先定義具體的評價標準。該文件將提出幾個潛在的解決方案,以及建議的行動。然后將根據規定的標準對每個解決方案進行詳細評估,包括實施中的任何潛在風險。還將討論其他被考慮但未被推薦的解決方案。最后,本文將對問題進行快速總結,提出最終建議,以及為什么這項研究與美國空軍有關。
RCIS旨在匯集來自信息科學各個領域的科學家、研究人員、工程師和從業人員,為知識共享和傳播提供機會。RCIS 2022將在大會上繼續關注傳統話題;此外,我們還邀請與下面描述的特殊主題相關的投稿。獲取、解釋、轉換和使用信息的方式引發了重要的倫理問題,例如誰可以獲取信息以及在多大程度上可以獲取信息,在解釋和使用信息時如何避免偏見,以及基于特定信息工件做出的決策如何公平。此外,在這種情況下,信任是至關重要的,因為人們越來越依賴于信息的處理方式。我們越是需要信息來做出關鍵的決定,就越需要開發合乎道德和值得信賴的信息系統和服務。
本教程是為對可靠的網絡安全風險管理方法感興趣的人準備的,能夠有效和充分地考慮人類引入任何信息系統的風險。在建立了這些之后,我們都了解了網絡安全、可信度、系統建模、風險管理和社會技術理論等相同的基本概念,然后,我們將探討可視化攻擊路徑在提供容易理解的風險和支持人類選擇適當的緩解措施(從而確保智能風險管理工具不會成為用戶的“黑匣子”)方面的重要性和作用,以及攻擊路徑如何幫助確定最有效的風險緩解策略。接下來,我們將調查人類交互流,以及它們如何與攻擊路徑相結合,以增強全面的網絡安全風險評估,并幫助指導整體緩解措施。在本教程的最后三分之一,您將接觸到安全系統建模工具和人力和組織風險建模流程圖,開始對信息系統建模,并識別和減輕網絡安全風險。您將需要攜帶您的筆記本電腦來學習本教程。
//www.rcis-conf.com/rcis2022/tutorialsInfo.php
目前戰斗機飛行員的訓練幾乎無一例外地是按固定的小時數和特定的時間安排設計的。基于績效的訓練是一種旨在優化訓練的概念,最好是個性化的方式。它是關于事先防止訓練/表現差距,而不是事后解決它們。有效的個性化學習假設所提供的學習任務具有最佳難度水平。為此,本文提出了一種基于多種認知負荷指標的飛行員認知負荷實時分類優化負荷模型。該研究旨在測試腦電圖(更具體地說,是個人的上波段功率和θ波段功率),作為戰斗機駕駛艙環境中該模型的認知負荷指標之一。共有4人參加,他們都是前F-16飛行員。每個參與者都進行了三次多次跑步。第一次測試(記憶測試)的認知負荷預計會比最后一次測試(性能測試)的認知負荷更高。與記憶測試相比,表現測試中的表現和主觀工作量分別更高和更低,而認知負荷指標顯示兩種測試之間的混合結果,這可以歸因于個體間和個體內的高差異。
關鍵詞:績效訓練,認知負荷,腦電圖,戰斗機駕駛艙模擬器,保持間隔,戰術攔截
目前,戰斗機飛行員的訓練幾乎無一例外都是在特定的時間內進行固定小時的資格訓練和年度訓練。一般來說,偏離項目與組織要求有關,較少與個體飛行員的要求有關。基于績效的培訓是一個培訓概念,旨在優化培訓,最好是以個性化的方式,以便在正確的時間和正確的資源提供相關的培訓活動。它是關于防止訓練/表現差距,而不是事后解決它們,可以用于目標的最高個人標準,而不是確保最低標準。基于性能的培訓需要先進的技術來測量和記錄飛行員和系統的性能和行為。它還需要先進的分析技術。由于各種各樣的原因,這兩種技術在實踐中很少使用。它們需要組織中缺乏的專業知識,它們需要時間來使用,它們可能會影響任務的執行(它們是“侵入性的”)。我們預計,隨著技術的進步,這些限制將在未來十年消失。
在尋找最佳學習條件的過程中,教育科學研究者提出了個性化學習的概念。與個性化醫學的成功發展類似,個性化學習旨在識別學習中個體差異的遺傳、神經和行為預測因子,并旨在使用預測因子幫助創建最佳教學范式[1]。有效的個性化學習至少假定所提供的學習任務具有最佳的難度水平。最佳任務難度與表現和認知負荷的平衡有關(“認知負荷理論”)。在學習的過程中,需要適當的任務難度來保持平衡。次優的任務難度會導致無效的訓練,例如,向專家提供適合新手的訓練,已經發現會對他們的學習進度產生負面影響。通過提高積極性可以更快地達到平衡。這些發現與Vygotsky的兒童最近發展區(Zone of Proximal Development for children)[5]和游戲設計[7]中應用的流概念Csíkszentmihályi[6]相一致:焦慮和無聊之間的“流通道”(見圖1)。后一個概念強調了任務難度在挑戰性和簡單性活動之間波動的帶寬的重要性,同時避免極端沮喪或無聊的狀態。這種進步可能不僅對游戲有刺激作用,而且對任何類型的活動都有刺激作用,包括Kiili[8]所顯示的學習。
未來的戰斗機飛行員和遠程作戰人員將需要先進的決策和注意力支持,以應對日益復雜、不確定的信息和多智能體協調。監測飛行員的精神狀態和意識,并將其提供給系統,可以更好地實現人與系統的協作,提高聯合性能。研究表明,不同的心理-生理測量技術可以用于評估多種認知和情感狀態,如精神工作量、注意力、疲勞,以及工作相關變量,如任務難度和任務完成情況。然而,對多種傳感技術的實時評估和信號時序的研究卻很少。我們開發了一種實驗性的人工智能管道,使用眼動跟蹤(眼跳、注視時間等)、皮膚電活動(EDA)和心率變量(例如,HR和HRV)實時調查戰斗機飛行員的心理狀態。該系統采用混合分析方法,包括數據流處理和機器學習(ML),使不同信號事件的實時分析和基于時間的推斷成為可能。我們報告了該方法的優點和缺點,介紹了正在進行的系統實證實驗的結果,并討論了高級注意力指導的可能應用。
關鍵詞:人工智能,戰斗機飛行員,心理狀態,心理生理學,戰斗機。
自適應自動化[1,2]是一種很有前途的方法,可以支持操作人員并保持他們的工作量在適當的水平上。今天,有許多傳感器技術可以佩帶或嵌入到我們的物理工作環境中,如眼動跟蹤眼鏡和智能手表。這些發展使得創建高級應用程序成為可能,這些應用程序跟蹤飛行員與操作任務相關的健康和認知狀態,并在需要時提供支持。因此,未來的工作環境可能會衡量個人和群體的表現、壓力和注意力水平,以優化和平衡個人和群體之間的任務為目標。然而,這種方法需要有方法和算法對操作者的工作量、壓力和注意力水平等認知狀態進行充分的實時分類和評估[4,5,6],而這只能通過使用心理生理傳感器來實現。未來的應用包括未來軍事概念的飛行員環境,載人和無人駕駛,具有適當水平的自主權來協助飛行員和決策支持,以應對信息過載的影響。此外,對于已知用戶認知需求的特定任務,不同類型的自動化之間的分離可能是有益的。我們的研究旨在探索工作負荷誘導的各種心理生理反應的模式識別的潛力。我們的目標是了解這些反應和信號之間的關系,以便用于未來的自適應自動化技術,以減少操作人員的心理工作量,提高注意力,從而確保性能水平。
在本文中,我們提出了一種基于時序時間的分析引擎,用于對多個傳感器數據和心理生理現象進行實時分類和驗證。此外,我們提出了數據收集方法和實驗設置,以驗證假設的眼睛,心臟和皮膚電對外界刺激的反應模式。首先,我們介紹了本研究中用于評估認知狀態的心理測量方法的背景。其次,我們討論了實時處理數據流的人工智能管道。第三,我們介紹了在虛擬現實環境中使用眼動跟蹤、心率和皮電反應的實驗裝置。在本文的其余部分,我們將介紹這種方法的優點和缺點。
可解釋的人工智能(XAI)提供了克服這一問題的手段,它基于有關深度學習(DL)算法結果的額外補充信息。雖然完全透明對于復雜的DL算法來說仍然是不可行的,但解釋有助于用戶在關鍵情況下對AI信息產品進行判斷。應該指出的是,XAI是透明度、因果關系、可信度、信心、公平、信心和隱私等方面的總稱。因此,基本的方法論是多方面的。一種已經流行的方法是局部可解釋模型-預知解釋(LIME)方法,因為它可以很好地應用于各種應用中的不同模型。在本文中,LIME算法是在戰略運營的決策建議背景下進行研究的。在簡單介紹了其概念后,介紹了文獻中的應用。然后,一個戰略博弈的場景被認為是軍事戰爭的替代環境。一個基于DL的國際象棋人工智能被做成 "可解釋的",以評估信息對人類決定者的價值。得出了與戰略混合行動有關的結論,這反映了所提出的方法的局限性。
根據設想,未來戰略戰爭的決策將在很大程度上受到基于人工智能(AI)方法的信息產品的影響。特別是混合作戰,是在一個高維和變異的環境中進行的,在這種環境中,對潛在的威脅和機會的評估是人類操作者難以掌握的,戰略規劃必須納入異質的、多功能的和高容量的數據源。因此,基于人工智能方法的算法產生的分類、預測和建議在這種復雜的場景中變得越來越重要。在過去的幾年里,人工智能的方法已經獲得了巨大的發展,有大量的創新和令人尊敬的成果,可以從大型數據集中獲得更高層次的信息。然而,深度學習(DL)方法的一個主要缺點是其固有的黑箱屬性,即由于計算模型的復雜性,其結果是不透明的。例如,后者可能有數百個層和數百萬個參數,這些參數是在訓練階段通過算法發現和優化的。因此,即使結果是準確的,用戶也沒有機會理解它或掌握輸入數據的因果部分。這反過來又會影響到用戶對輔助設備的信任,在兩個方向上都是如此。這個問題在某些民事應用中起著次要的作用,例如語音識別,它經常被應用于與設備的互動,因為除了體面的失望之外沒有潛在的風險。對于其他非常具體的任務,如手寫字符識別,DL算法的性能超出了人類的平均水平,這意味著失敗的可能性很小,因此關于因果關系的問題可能成為附屬品。然而,在許多軍事應用中,當涉及到與人工智能的互動時,人類的信任是一個關鍵問題,因為錯誤的決定可能會產生嚴重的后果,而用戶始終要負責任。這實際上是兩方面的。一方面,操作者往往需要了解人工智能產品的背景,特別是如果這些產品與他或她自己的本能相悖。另一方面,不可理解的技術會對算法信息產品產生偏見,因為很難確定在哪些條件下它會失敗。因此,適當的信任程度可能很難計算。
可解釋的人工智能(XAI)是向黑盒人工智能模型的用戶提供 "透明度"、"可解釋性 "或 "可解釋性 "的方法的集合。這些術語幾乎沒有一個共同的定義,但許多出版物提到了:
XAI不能完全 "解釋 "DL模型,然而,它為工程師或操作員提供了更好地理解特定AI產品背后的因果關系的手段。而且很多時候,這可以幫助看到,從合理的因果關系鏈暗示算法決策或預測的意義上來說,該模型是否是合理的(或不是)。因此,XAI可以成為人工智能模型工程的一個重要工具,用于安全方面的驗證,甚至用于認證過程,以及為操作員提供額外的信息,以支持明智的決策。
雖然關于XAI的大多數文獻都集中在圖像識別的方法上,但這些結果很難轉化為基于特定挑戰性競爭形勢的戰術和戰略決策領域。在本文中,我們研究了人工智能模型在棋盤評估中的可解釋性。對更復雜的軍事戰略模擬的一些影響進行了討論。
本文的結構如下。在下一節中,簡要介紹了選定的XAI方法。然后,這些方法之一(LIME)被應用于棋盤評估問題,以證明在支持信息方面的解釋的質量。在最后一節,得出了結論,并討論了對更復雜的戰爭博弈和模擬的概括。
實時戰略游戲已經成為開發和分析人工智能(AI)和基于深度機器學習的競爭、攻擊者與防御者場景的算法的一個有吸引力的環境。基于計算機的實時戰略游戲和用于軍事訓練的戰爭游戲的特征之間的相似性也提供了一種手段,可以將基于人工智能的實時戰略游戲的結果和教訓過渡到幫助和告知作戰人員的決策能力。我們的論文研究了基于人工智能的實時戰略游戲和軍事決策中的戰略規劃之間的這種交集,這個領域被稱為對抗性人工智能。我們描述了在實時戰略游戲中開發有效的對抗性人工智能的問題和挑戰,我們最近組織了一次對抗性人工智能競賽,使用的是海洋環境中的模擬版奪旗游戲。我們討論了比賽的條目、結果和從競爭者的反饋中獲得的教訓,并為基于人工智能的、復雜的、對立的實時戰略游戲規定了未來的方向和公開的挑戰。
近年來,人工智能(AI)已經成為用于軍事和民用領域的自動化系統背后的主要使能技術。自動化系統必須不斷與環境中的其他實體互動,包括人類、智能設備、計算機和其他人工智能。傳統上,基于人工智能的系統在設計時假定與它們互動的其他實體是良性的。換句話說,互動的實體不會故意做出對抗性的行為來打敗或顛覆人工智能。然而,在現實世界中,隨著基于人工智能的系統變得更加普遍,敵對行為者不斷想出新的方法來迷惑基于人工智能的系統,使其失敗并以不正確、不安全甚至危險的方式運行。我們的論文描述了正在進行的應對這些挑戰的努力,作為 "五眼"(FVEY)技術合作計劃(TTCP)人工智能戰略挑戰(AISC)的一部分,在一個被稱為對立人工智能(OAI)的技術領域。
OAI的目標是更好地理解來自不同利益相關者的基于人工智能的系統在以噪聲和低質量數據為特征的環境中相互作用時出現的問題,這些利益相關者的心態和目標是不一致的,可能是相反的。OAI支柱的一個主要方向是將OAI問題建模為一個防御者與攻擊者的游戲,并使用強化學習技術開發和分析不同的游戲策略。為了實現這一目標,我們正在使用一個名為Aquaticus奪旗(CTF)的多人游戲。游戲編程界面是用Python和OpenAI Gym編寫的,以便與強化學習算法輕松靈活地整合,通過分析可能的攻擊和防御策略空間,智能地學習游戲和贏得比賽。在本文中,我們描述了與開發有效的基于人工智能的技術有關的問題和挑戰,這些技術可以使玩家在OAI場景中獲得決定性的優勢,以及我們在組織首屆OAI Aquaticus CTF比賽中的經驗。最后,我們討論了從比賽中獲得的一些經驗,并確定了未來的方向,這些方向將使人工智能研究普遍化,并使其更適于過渡到戰場上的對立場景中的有效決策。
未來的不確定性、復雜的軍事系統的相互依賴性和裝備軍隊的昂貴的公共投資,使國防投資優先次序(DIP)成為任何國家最難做出的決定之一。它們的難度和重要性促使SAS-134號文件對文獻進行調查并制定指導,以幫助各國做出最有可能實現預期國家成果的DIP決策。在文獻的基礎上,我們編制了一份關于國家DIP實踐的105項調查問卷,涉及投資規劃的時間框架和過程、投資目標和偏好的發展、用于分析的運籌學(OR)方法、成本類別和資源限制的處理、以及投資互動和風險的處理。根據13個國家的答復,該調查發現運籌學方法的使用是有限的,而且方法也有很大差異。大多數國家認為資金是一個堅實的制約因素,一些國家建立了運營預算模型,但沒有其他成本類別。DIP設計的多樣性表明,程序性指導不如指導性原則有用,我們從文獻中提供了決策質量結構,以便各國在認識到需要時評估和推進自己的決策過程。
SAS-134研究任務組"將戰略投資和撤資與國防成果聯系起來 "的啟動是為了從文獻和對當前國際慣例的調查中確定在計劃投資組合(PIP)中確定國防投資優先次序的最佳做法的實質性指導。對一些相關文獻的調查為制定和解釋國家間國防投資優先次序(DIP)的做法提供了依據。在第2.0節中,我們介紹了最相關的文獻和相應的見解,然后介紹我們解釋調查結果的結構。在第3.0節中,我們描述了調查的發展和執行,并在第4.1-4.6節中總結了調查結果,然后在第5.0節中簡要總結。
美國、她的盟國和對手正在為民用和軍事應用擁抱計算環境和技術(以下簡稱AI)的進步。我們的工作建議探討自主和半自主系統中的一個核心矛盾,即無人系統的部署長度(停留時間)與因不定期維護導致的單個系統故障和因對手行動導致的故障之間的基本權衡。本文的獨特之處在于,它將從政策的角度以及應用統計學的角度來探討這個問題,并為更廣泛的無人系統的采購和使用提供見解。
信任一個無人系統意味著什么?這個看似無關緊要的問題是無人駕駛技術的各種民用和軍用應用中的一個核心問題。隨著世界變得越來越自動化,人類看護者的監督越來越少,自主系統將在有限的監控下長期忍受下去。雖然具有長時間續航能力的自主系統可以成為民用和軍用海上監測的寶貴資產,但自主系統群的衰落是一個不可避免的現實。但是,預期的衰減速度和實際速度之間的差異可以為無人系統星座的惡意干擾提供一個早期指標。
上述分析提出了一個重要的問題,那就是當檢測到沒有反應而假定某個系統被摧毀時的故障歸屬。如果無響應是系統失敗的唯一指標,它可能是由各種因素造成的,包括環境、機械故障或最令人擔憂的損耗,我們將其定義為旨在使無人駕駛系統喪失功能并加以摧毀的惡意敵方行動。使用這個定義,損耗與失敗是分開的,因為失敗是由不涉及有目的的敵方行動的情況造成的。對于軍事平臺來說,損耗是最嚴重的情況,因為這些平臺上可能攜帶著操作員不希望落入對手軍隊手中的機密傳感器和有效載荷。
同樣,了解自然退化模式可以使一個國家以一種難以區別于隨機故障的方式使對手的系統退化。這樣的方法可以使一個國家有能力參與進攻性行動,或者在紅方參與軍事行動之前限制藍方對跡象和警告(I&W)的探測。 我們在本說明中的貢獻是在一個統一的結構中考慮無人駕駛系統退化的可靠性和博弈方面。我們的論文結構如下。在第二節中,我們從應用數學和政策的角度回顧文獻。在第三節中,我們對可靠性和博弈論進行了初步的、數學上的統一闡述。在第四節中,我們探討了具體的方案,最后總結了結論并為未來的分析提供建議。
建模和仿真有助于德國武裝部隊后勤的數字化,必須提供靈活性和穩健性等因素,以識別后勤鏈中的風險和弱點。 ESG,作為一家擁有多年軍事經驗的德國軍事技術公司,我們展示了成功的仿真和分析項目(例如,“以歐洲戰斗機為例,預測德國空軍的作戰能力”或“基于仿真的醫療救援鏈分析”),并提出進一步的行動方向,例如基于仿真的分析,以優化軍事供應鏈中的加法生產或自主系統的最佳概念。通過對軍事供應鏈使用后勤仿真,可以檢查和優化其穩健性和可持續性。這種基于數據的決策支持方法(工具 AnyLogic,德國聯邦國防軍基于仿真的分析指南和模型檔案)。它聚焦于一個關鍵問題,例如“在某些參數/因素/影響下,系統的材料運行準備情況如何更高概率的為在未來發展,以及什么可以提高系統的性能?”如本講座所述那樣提供各種優勢。
圖2-1 模型開發流程
圖2-2 系統結構
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。